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Executive Summary

This document is the third deliverable from WP2 “Pattern-Based Parallel Software
Engineering”. It provides the following contributions i) a coherent, complete and
formalised set of parallel patterns for data-intensive applications, together with a
domain specific language (DSL) to represent them; ii) pattern implementations on
top of existing parallel programming frameworks; iii) a pattern discovery method-
ology (for widely used legacy and existing parallel applications); iv) C++ program
shaping/componentisation techniques; and v) refactoring rules and tool-support for
the introduction and tuning of parallel patterns in both new and existing C++ ap-
plications.

This deliverable, D2.3 “Report on program shaping and pattern discovery for
the initial pattern set.", integrates the results of the different phases of WP2 (T2.3
“Program Shaping” and T2.4 “Pattern Discovery”) where, according to the DoW
we will report the initial program shaping methods and describe the pattern dis-
covery techniques for the initial pattern set. The work in this deliverable is divided
in two steps. First, it defines the program shaping techniques and methods for the
initial pattern set of RePhrase. These techniques allow refactoring of sequential
C++ programs into hygienic C++ code with equivalent functionality by eliminat-
ing non-hygienic code properties, such as side-effects and unnecessary task/data
dependencies. The second step holds two sub-steps: it defines pattern candidates
along with their conditions and properties to be introduced in C++ applications;
and presents a prototype for pattern discovery that, using the aforementioned con-
ditions, identifies instances of parallel pattern candidates within C++ applications.

The placement of D2.3 in the WP2 overall deliverable list is summarized by
the following schema:

while the strict influences between pattern design and implementation in WP2 and
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activities in the other major technical workpackages are summarized by the follow-
ing schema:

The contributions per partner of this deliverable led by UC3M are the follow-
ing:

• PRL has contributed in Chapter 2, reviewing program shaping techniques
and methods in order to refactor sequential C++ programs into hygienic C++
code with equivalent functionality.

• UNIPI and UC3M have contributed in Chapter 3, describing for each pattern
of the initial set of RePhrase the conditions and requirements that need to
be satisfied in order to be introduced in C++ applications.

• UC3M has contributed in Chapter 4, presenting a prototype pattern discovery
tool that, using the aforementioned conditions and a static approach, identi-
fies instances of pattern candidates within C++ applications at compile time.

• Evopro has contributed in Chapter 4, evaluating the parallel pattern discovery
tool on the main code base of evopro eRDM use-case.

• UC3M has produced Chapter 5 enumerates a few concluding remarks and
future works.
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1. Introduction

Although most of the current computing hardware, such as multi-/many-core pro-
cessors, GPUs or co-processors, has been envisioned for parallel computing, much
of the prevailing production software is still sequential [26]. In other words, a large
portion of the computing resources, i.e. cores, provided by modern architectures
are basically underused. Therefore, a big effort in this sense needs to be carried
out by the HPC community so as to refactor sequential software into parallel. To
tackle this issue, several solutions in the area have been implemented. For instance,
parallel programming frameworks and concurrent skeletons are well-known ap-
proaches in order to efficiently exploit parallel computing architectures [7, 23].
Actually, in the current state-of-the-art there can be found multiple parallel pro-
gramming frameworks that benefit from shared memory multi-core architectures,
such as OpenMP [21], Cilk [6], Intel TBB [27] or FastFlow [9]; distributed plat-
forms, such as MPI or Hadoop; and some others especially tailored for accelera-
tors, as e.g., OpenCL and CUDA. Nevertheless, only a small portion of production
software is using these frameworks.

One of the main aims of the WP2 from the RePhrase project is to provide the
application programmers a comprehensive set of parallel patterns that may be used
to implement efficient parallel applications. Practical use cases in this sense are se-
quential data-intensive applications, broadly encountered in production scientific
and industrial areas. Just a simple analysis over their code would reveal that a vast
majority of algorithms and methods used underneath match perfectly with parallel
patterns. A solution to parallelize these codes is to manually translate the source file
codes, however this task results, in most cases, a cumbersome and very complex
task for large applications. Another solution is to use refactoring tools, applica-
tions that advice developers or even semi-automatically transform sequential code
into parallel [5, 8]. Although source codes transformed using these techniques do
not often get the best performance, they aid to a great extent developers in order to
reduce necessary refactoring time [17]. Unfortunately, refactoring tools found are
still premature, not yet being fully adopted by development centers. In fact, many
of them are human-supervised, being the developer responsible for providing spe-
cific sections of the code being analyzed and refactored. Although this alleviates
the source-to-source transformation, the process remains semi-automatic. A key
component for turning this process from semi- to full-automatic are parallel pat-
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tern detection/discovery tools.
This document defines the set of program shaping techniques and methods in

order to refactor sequential C++ programs into hygienic C++ code with equiva-
lent functionality by eliminating non-hygienic code properties, such as side-effects
and unnecessary task/data dependencies. It also describes the sets of requirements
and properties for the initial pattern set, defined in D2.1, that need to be satis-
fied in C++ codes in order for a particular pattern to be introduced. The rules
stated for these patterns will be further used to analyze patterns from the use cases
provided by developers in the project and to sketch their parallel implementation.
Also, they will be leveraged in the “core” software engineering related activities
of the project to focus generic software engineering techniques on structured par-
allel software rather than on generic parallel software. Furthermore, we provide a
prototype module extension for detecting the pipeline pattern along with an eval-
uation with a set of state-of-the-art sequential benchmarks and of some selected
tests on code-bases from industrial solutions. In general, all these facts motivate
the contributions presented in this deliverable, namely D2.3, from the RePhrase
project.

The deliverable contents are organized into three main parts:

• Chapter 2 reviews program shaping techniques and methods in order to
refactor sequential C++ programs into hygienic C++ code with equivalent
functionality.

• Chapter 3 describes for each pattern of the initial set of RePhrase the condi-
tions and requirements that need to be satisfied in order to be introduced in
C++ applications.

• Chapter 4 presents a prototype pattern discovery tool that, using the afore-
mentioned conditions and a static approach, identifies instances of pattern
candidates within C++ applications at compile time.

• Chapter 5 enumerates a few concluding remarks and future works.
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2. Program shaping methods and
techniques

2.1 Introduction

This part of the document identifies the unhygienic code properties, such as side-
effects and unnecessary task/data dependencies. This approach is independent of
the refactoring method used, allowing for such refactoring to be automatic or man-
ual. Rectifying unhygienic code properties increases the proportion of source code
to which parallel patterns can be applied.

The unhygienic properties are categorised in the following sections.

2.2 Identification of poor coding practice and undefined
behaviour

Undefined behaviour affects code in several ways by:

1. invalidating or corrupting the object model.

2. introducing non-deterministic behaviour.

In a sequential program a minor misuse of the memory model may well go
unnoticed; however, it is much more likely to impact a parallel program. Such
issues must be addressed. Examples of such behaviour are:

• Use of an object after its lifetime has ended.

• Use of an invalid memory (e.g. dereference of null pointer, or outside of an
array bounds)

• Invalid arithmetic operation (e.g. mod/divide by zero)

• Missing return statement.

• Use of an object with indeterminate value.
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The second category of undefined behaviour may not be fatal but can result in
non-deterministic program behaviour. Examples are:

• Dependence on the sequence of evaluation within an expression.

• Use of relational or binary minus operator on pointers to different objects.

In addition to the above, use of certain best practices simplify the identification
of hygienic code:

• Use const container calls when result is immediately converted to a const
iterator (e.g. cbegin/cend)

• Declare static a member functions that does not refer to this.

• Declare const a member functions that refers to this but does not modify the
objects externally visible state.

• Postpone variable definitions as long as possible.

• Use RAII for resources.

• Ensure that all statements are reachable and no expression or sub-expression
is redundant.

2.3 Identification of pure functions

This section outlines properties a function must hold for it to be pure, thereby
meeting a precondition for many parallel patterns.

2.3.1 Non-pure reads and writes

A function will be non-pure if it reads or writes to an object other than:

• a non-volatile automatic variable, or

• a function parameter, or

• an object allocated within the body of the function.

The following is an example of a pure function:

int * f2(int i, int j)
{

int * k = new int (i + j);
return k;

}
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For determining if a function is pure or not, taking the address of a variable
will be considered as a read of the variable itself. For example, reading the address
of a variable with static storage duration will result in the function being non-pure:

int m;
int * f2() // non-pure as ’reads’ m
{
return &m;

}

2.3.2 Non returning functions

A function will not be considered as pure when:

• The body contains loops which can be statically determined as infinite, or

• The function can be statically determined as directly or indirectly recursive

• The function calls a function that causes the program to exit immediately,
for example:

– std::exit

– std::abort

– std::terminate

• The function calls std::longjmp

When determining if a function returns, exceptions are not considered.

2.3.3 Calls made to non-pure functions

A function will inherit the status of functions it calls. Therefore, a call to a non-pure
function will result in the caller also being non-pure.

void f1(); // non-pure

void f2() // not pure, calls ’f1()’
{
f1();

}

2.3.4 Code reachability

For the purpose of determining if a function is pure, the reachability of non-pure
code will be ignored. For example:

void f1(); // not pure

void f2() // not pure, calls ’f1()’
{
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if (0) {
f1();

}
}

void f3() // not pure, calls ’f1()’
{

return ;
f1();

}

However, note that unreachable code is in itself unhygienic, see Section 2.2

2.4 Identification of Pure Functors

This section outlines properties of a functor that would result in it not being a pure
functor, thereby invalidating a precondition for many parallel algorithms.

A functor or function object is a class that implements the function call opera-
tor. Additionally, the function object can also contain state.

2.4.1 Context capture

A functor can be implemented in several ways:

• a class defining the function call operator, or

• a lambda expression, or

• binding arguments to a function using std::bind

In each of these cases, context from the enclosing scope can be captured in the
functor, either by reference or by value/copy. Any capture by reference will result
in the functor being non-pure.

2.4.2 Non-pure reads and writes

Similar to the restrictions for pure functions, a functor will not be pure if its function
call operator reads or writes objects other than:

• a non-volatile automatic variable, or

• a function parameter, or

• an object allocated within the body of the function, or

• the captured context (read only).

2.4.3 Calls made to non-pure functions

A functor will inherit the status of functions it calls in its function call operator.
Therefore, a call to a non-pure function will result in the caller also being non-pure.
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2.4.4 Exceptions

If a functor is used in an algorithm, throwing an exception from a functor will result
in the algorithm to be aborted. Therefore, the use of exceptions will result in the
functor being non-pure.

2.4.5 Non returning functors

Restrictions of Section 2.3.2 apply to functors also.

2.5 Identification of unhygienic loops

The smallest section of source code which can be parallelised is an innermost loop.
However, a loop can exhibit unstructured properties, which may make it impossible
to meaningfully speed up, or achieve equivalence with the sequential version.

If a loop initialisation statement, condition or increment expression contain
side-effects, these will occur before evaluating the loop body on each iteration, and
are considered when determining if a loop is hygienic.

2.5.1 Accessing objects visible outside of the loop

A data race or loop carried dependence is possible, when parallelising a loop body
that accesses any object with lifetime exceeding that of the loop itself. Both stack
and heap allocated objects are considered. For the purposes of determining life-
time, usage of the address of operator, memory allocation function, or copy as-
signment are considered the only valid ways to set the value of a pointer, e.g. the
effects of pointer arithmetic are ignored. Both the lifetime of a pointer and its
aliased object are taken into account.

2.5.2 Jumps

Presence of break, continue or return statements in a loop violates a precondition
for many parallel patterns. Additionally, a goto statement jumping outside of the
loop will similarly make the loop unhygienic; as will a non-returning construct
appearing in the body of a loop, as defined in Section 2.3.2. Note, that an infinite
loop is hygienic, as it can be parallelised, as opposed to a loop with one of its
iterations never terminating.

A backward goto, i.e. jumping to a preceding location in source code, not
crossing a loop scope is equivalent to a loop itself, and is considered unhygienic.
The loop should be rewritten with an equivalent explicit loop, if a parallel pattern
is to be applied to it.
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2.5.3 Throw

Exceptions are assumed to rarely occur, so typically they can be ignored, or handled
at the top level of each thread. However, exceptions could also be misused for
regular control flow, e.g. in place of a forbidden break or goto statement. With this
in mind, occurrence of a throw statement in a loop is also unhygienic.

2.5.4 Calling pure functions

Another prerequisite of many parallel patterns is that all functions called from a
loop are pure.

2.5.5 Nested loops

An outer loop may be hygienic even though an inner loop is not, for example:

void pure1(int a);

void f1(int a)
{

for (int i (0); i < a; ++i)
{

int n (0);

for(int j (0); j < i; ++j)
{
if(5 == j)
{
continue; // inner loop is unhygienic

}
++n; // inner loop is unhygienic

}

pure1(n); // outer loop is hygienic
}

}

Providing the outer loop catches all exceptions thrown explicitly by any inner
loops, it will remain hygienic. Note, that this concept does not extend to calls
to non-pure functions, or a loop with an inner infinite loop, which propagate the
unhygienic classification to all enclosing loops and functions.

2.6 Identification of unhygienic algorithm use

Some uses of sequential STL algorithms can be trivially parallelised if the func-
tors used don’t exhibit unstructured properties. The use of non-pure functors in
sequential algorithms is therefore unhygienic.

13



2.7 Identification of the function cost

An ability to estimate the runtime cost of a loop or a function can augment or
replace the need to perform profiling, to identify the best parallelisation opportu-
nities. The techniques for compile time cost estimation are detailed below. Note
that it is sufficient to estimate the relative cost in terms of a unit, e.g. the simplest
possible CPU instruction modifying the program state, such as a memory fetch,
ignoring the effects of compiler optimization.

2.7.1 Estimating the cost of statements

Expression and declaration statements are the building blocks of a C++ program,
with all other kind of statements grouping these into well defined control flow.
Additionally, the body of a function is a compound statement, and a function call
is an expression. Starting from a particular entry point, a cost estimate can be
computed by recursively applying formula for accumulating the cost of constituent
statements and expressions, as detailed below.

Expression cost: The basis for estimating cost of a particular expression can be
derived from ISO/IEC 14882:2011 Programming Language C++, relative cost of
individual instructions on a von Neumann architecture, and for higher level C++
constructs from ISO/IEC TR 18015: Technical Report on C++ Performance. With
the exception that the cost of a function call expression is the cost of the associated
function definition – its compound statement. Any recursive application of function
cost is prevented, and lower bound of the cost of a single recursive pass is used.

The cost of an expression statement is simply the cost of the associated expres-
sion, as is the cost of a declaration statement with an initialiser, e.g. the cost of
a constructor and destructor call. A declaration of a POD object without storage
duration has no cost.

Compound and label statements: The cost of a compound statement is a sum
of the cost of its constituent statements. Similarly, the cost of a label statement is
that of its sub-statement.

Selection statements: The cost of an if statement is taken to be the maximum
cost of any of its sub-statements, added to the cost of the condition. Similarly, for
a switch statement, with the sub-statements taken to be the individual case clauses,
accounting for the effect of any fall-through.

Iteration statements: If the number of loop iterations can be determined at com-
pile time, the cost of a loop is defined by the following formula a+n ∗ (b+ c+d),
where a is the cost of an initialisation statement, if any, b is that of a condition ex-
pression, c – increment expression, if any, d – the loop body, and n is the number
of iterations. The cost of other loops is calculated with the above formula assuming
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a single iteration (n = 1), to provide a lower bound for deciding to apply parallel
patterns.

Jump statements: The cost of a goto statement is a single unit of cost. Although,
a backward goto is equivalent to a loop, this estimate provides a lower bound,
taking into account that the loop is unhygienic (see Section 2.5.2), so only the
enclosing loop or function may be a candidate for parallelisation.

2.7.2 Identification of initialisation code

Typically a program will consist of some initialisation code, followed by a form
of significant iterative computation, and finally clean-up code. The initialisation
and clean-up code are not particularly promising areas for parallelisation, thus if
suitably identified, that code can be excluded from application of parallel patterns.

Initialisation code is identified as code from the beginning of the main function,
up to the first occurrence of a nested loop or a loop with an unknown number of
iterations (see Section 2.7.1). Similarly, the clean-up code extends from the last
such occurrence (excluding it) to the end of the main function. For the purposes of
this analysis, function calls are replaced with the corresponding function body.

2.8 Decidability

Identification of unhygienic code properties specified above can be performed with
suitable static code analyses. In particular pattern based analysis applied to a com-
plete program is sufficient to accurately determine all unhygienic code, and calcu-
late function cost. Therefore, using the terminology of MISRA-C guidelines, all
Program Shaping methods defined in this report are decidable.
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3. Pattern discovery techniques

This part of the document enumerates the properties and conditions for each of
the patterns of initial set from the RePhrase project, that need to be satisfied in
order to be applied into a C++ application. This requirements will be used for
the Parallel Pattern Analyzer tool presented as a prototype in the next chapter of
this document. We follow the same classification of patterns listed in deliverable
D2.1 for describing their requirements. To ease the understanding, we reference
each pattern described with references to D2.1. We refer these parallel design
patterns “fundamental” as we aim at including in the initial set the most common
and throughly used known parallel design patterns. Note that the most important
patterns are Farm, Pipeline, Map, Stencil and Reduce, and others, such as Stream
filter pattern can be derived from the previous ones.

The initial set of RePhrase patterns is described both classifying the patterns
according to the kind of parallelism captured (stream or data parallelism) and dis-
tinguishing the way data to be processed are provided to similarly structured pat-
terns (from external or internal stream sources or from existing data collections, ei-
ther in-memory or disk based). We also list “sequential” patterns with the purpose
of providing the application programmer with patterns suitable to wrap existing se-
quential (“business logic”) code in such a way the code may be used as functional
parameter of other patterns (e.g. a stage in pipeline or a worker in a map pattern).
In the descrition of the patterns we also relate data management patterns that can
be introduced during the refactoring task.

3.1 Sequential patterns

3.1.1 Sequential code wrapper

This pattern wraps a sequential code portion such that it may be used to compute
the application “business logic” in all those places where parallel pattern require a
parameter expressing a computation. More details about this pattern can be found
in Deliverable 1.2, Section 3.1.1.

Requirements The requirements of this pattern should determine whether a por-
tion of code can be translated into a pure function. The requirement of this pattern
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is summarized as follows:

• No side effects. There should no exist read (write) accesses to variables that
are not included in the input (output) paramters or declared internally, nor
static variables representing internal states.

3.1.2 Sequential composition

This pattern executes two or more computations using the same resources, sequen-
tially. More details about this pattern can be found in Deliverable 1.2, Section
3.1.2.

Requirements The requirements of this pattern should determine whether a por-
tion of code can be translated into a sequence of pure functions. The requirements
of this pattern are summarized as follows:

• No side effects. There should no exist read (write) accesses to variables that
are not included in the input (output) paramters or declared internally, nor
static variables representing internal states.

• Set of pure functions. The portion of the code should be divisible in more
than one pure functions.

3.2 Stream parallel patterns

In this section we describe the requirements of the stream parallel patterns included
in the initial RePhrase pattern set. Basically these patterns exploit parallelism in
the processing of different items belonging to one or more input data streams. An
input data stream is characterized by having a type and by being able to provide
items (to be computed) one after the other with a given interarrival time.

The stream parallel patterns included in the initial RePhrase pattern set include
patterns modelling map, filter, reduce and iterative computations.

3.2.1 Farm

This pattern computes in parallel the same function f : α → β over all the items
appearing onto an input stream of type α stream delivering the results on the pat-
tern output stream of type β stream. Computations relative to different stream
items are completely independent. This pattern is also referred to as task farm or
stream map. During the refactoring process, the introduction of this pattern implies
the use of a stream generator and collapser patterns. More details about this pattern
can be found in Deliverable 1.2, Section 3.2.1.
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Requirements The requirements of this pattern should determine whether a loop
can be refactored into a parallel farm, i.e., if its iterations are independent each
other. These requirements are described as follows:

• No global variables modified. There should not exist instructions that modify
global variables in the loop.

• No RAW dependencies. There should not exist Read-After-Write (RAW)
dependencies of variables used within iterations of the loop.

• No break statements. There should not exist break statements (continue,
break or return) in the loop, as they cannot be paralelized. However,
they can be allowed in inner scopes of the main loop.

3.2.2 Pipeline

This pattern computes in parallel several stages on a stream item. Each stage pro-
cesses data produced by the previous stage in the pipe and delivers results to the
next stage in the pipe. During the refactoring process, the introduction of this pat-
tern implies the use of a stream generator and collapser patterns. More details
about this pattern can be found in Deliverable 1.2, Section 3.2.2.

Requirements The requirements of this pattern should determine whether a loop
can be refactored into a parallel pipeline. These requirements are described as
follows:

• Multiple stages. The loop should be able to be divided in more than one
stage.

• Interconnected stages. Each stage in the pipeline should receive, as inputs,
the outputs from the previous stage.

• No global variables modified. There should not exist instructions that modify
global variables in the loop.

• No RAW dependencies. There should not exist RAW dependencies of vari-
ables used simultaneously within stages of the pipeline.

• No break statements. There should not exist break statements (continue,
break or return) in the loop, as they cannot be paralelized. However,
they can be allowed in inner scopes of the main loop.

3.2.3 Stream filter pattern

This pattern computes in parallel a filter over an input stream of type α stream,
that is passes to the output stream of type α stream only those input data items
passed by a given boolean “filter” function (predicate) P : α → {true, false}.
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During the refactoring process, the introduction of this pattern implies the use of
a stream generator and collapser patterns. More details about this pattern can be
found in Deliverable 1.2, Section 3.2.3.

Requirements The requirements of this pattern can be summarized as follows:

• Boolean filter function. The filter function of the stream filter should be a
pure boolean function, i.e., the result of the function on a stream element
should be independent from other stream elements. This function should
receive only one element of the input stream.

• Equal input/output stream types. The input and output stream data type
should be the same.

• Conditional output generation. There should exist a conditional statement
that determines which input elements are passed to the output stream. This
statement depends on the boolean filtering function.

3.2.4 Stream accumulator pattern

This pattern “sums up” all items appearing on the input stream and delivers results
to the output stream. The function used to sum up values (⊕) may be any kind
of binary function of type ⊕ : α × α → α. During the refactoring process, the
introduction of this pattern implies the use of a stream generator and collapser
patterns. More details about this pattern can be found in Deliverable 1.2, Section
3.2.4.

Requirements The requirements of this pattern can be summarized as follows:

• Accumulative function. The accumulative function should be a pure function
computing a binary operation that, applied to a subset of the input stream
elements, produces an output element.

• Equal input/output stream types. The input and output stream data type
should be the same.

3.2.5 Stream iteration pattern

This pattern implements a function α stream→ α stream by iterating the compu-
tation of another pattern α stream→ α stream over one or more items appearing
onto the input stream, and delivers results on the output stream. During the refac-
toring process, the introduction of this pattern implies the use of a stream generator
and collapser patterns. More details about this pattern can be found in Deliverable
1.2, Section 3.2.5.

19



Requirements The requirements of this pattern can be summarized as follows:

• Computing function. The computing function should be a pure function that,
applied to an input stream element, produce another element of the same
type.

• Equal input/output stream types. The input and output stream data type
should be the same.

• Nested loop. There should be an inner loop in this portion of code that con-
tains the computing functions. The number of iterations of this loop is given
by the results of a boolean predicate.

• Boolean expression or function. There should exist a boolean predicate that
determines the number of iterations of the nested loop. This function de-
pends on input stream data type.

3.3 Data parallel patterns

In this section we describe the requirements of the data parallel patterns included
in the initial pattern set. Basically these patterns exploit parallelism in the process-
ing of different items or (possibly overlapping) partitions of items belonging to a
single “collection” data item. The different data processed in parallel exist at a
given point in time, that is there is no need to await them in time as it happens for
stream data items.

The data parallel patterns included in the initial pattern set include map, reduce,
stencil, divide and conquer and iterative computations.

3.3.1 Map

This pattern computes a given function f : α → β over all the data items of an
input collection whose elements have type α and produces as output a collection of
items of type β hosting the resulting values isomorphic to the input collection. Each
item at a generic position i in the output collection come from the computation
of the function f onto the data item in the corresponding position of the input
collection. This patterns is also known as parallel for, apply-to-all. During the
refactoring process, the introduction of this pattern implies the use of a splitter and
merger patterns. More details about this pattern can be found in Deliverable 1.2,
Section 3.3.1.

Requirements The requirements of this pattern should determine whether a loop
can be refactored into a parallel map, i.e., if its iterations are independent each other
and if there are relationships between the input and output data streams. These
requirements are described as follows:
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• Dataflow dependencies: Each element of the output stream should depend
on, at least, one element of the input stream.

• No global variables modified. There should not exist instructions that modify
global variables in the loop.

• No RAW dependencies. There should not exist RAW dependencies of vari-
ables used in different iterations of the loop.

• No break statements. There should not exist break statements (continue,
break or return) in the loop, as they cannot be paralelized. However,
they can be allowed in inner scopes of the main loop.

3.3.2 Stencil

This pattern computes in parallel the new value of items in an input data collection
to be placed at the correspondent position into an isomorph output collection. The
computation of the result relative to the item requires as input data some items
belonging to the nearer positions of the input collection. During the refactoring
process, the introduction of this pattern implies the use of a splitter and merger
patterns. More details about this pattern can be found in Deliverable 1.2, Section
3.3.2.

Requirements The requirements of this pattern should determine whether a loop
can be refactored into a parallel stencil, i.e., if its iterations are independent each
other and if there are neighborhood relationships between the input and output data
streams. These requirements are described as follows:

• Neighborhood dependencies: Each element of the output stream should de-
pend on, at least, one element of the input stream and its neighbours.

• No global variables modified. There should not exist instructions that modify
global variables in the loop.

• No RAW dependencies. There should not exist RAW dependencies of vari-
ables used within iterations of the loop.

• No break statements. There should not exist break statements (continue,
break or return) in the loop, as they cannot be paralelized. However,
they can be allowed in inner scopes of the main loop.

3.3.3 Reduce

This pattern “sums up” all the data items of a collection of items of type α using a
binary function⊕ : α×α→ α that is usually associative and commutative. During
the refactoring process, the introduction of this pattern implies the use of a splitter
and merger patterns. More details about this pattern can be found in Deliverable
1.2, Section 3.3.3.
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Requirements The requirements of this pattern can be summarized as follows:

• Accumulative function. The accumulative function should be a pure function
computing a binary operation that, applied to the set of the input stream
elements, produces an output element.

• Accumulative variable. The accumulative variable is the output value and it
is accessed for read and write each time the accumulative function is called.

• Equal input/output stream types. The data type of the input stream and output
value should be the same.

3.3.4 MapReduce

This pattern computes a key value function over all the items of an input connection
and eventually delivers a set of unique key value pairs where the value associated
to the key is the “sum” of the values output for the same key in the first “map”
phase. This pattern is also known as Google mapreduce. During the refactoring
process, the introduction of this pattern implies the use of a splitter and merger
patterns. More details about this pattern can be found in Deliverable 1.2, Section
3.3.4.

Requirements The detection of the MapReduce pattern is basically a composi-
tion of stream filters and a reduce pattern, therefore their individual requirements
should be checked. These requirements are described as follows:

• Three stages. This pattern should be composed of three stages: two map
stages and a reduction stage.

• Key production. The first stage should process each input data item and
produce a 〈key, value〉 pair out of it. This stage should meet the requirements
relative to farm workers, that is:

– No global variables modified. The code producing the 〈key, value〉
pairs out of the input data should not modify any global variable.

• Key agglomeration. The second stage should process all the 〈key, value〉
pairs to produce a collection of 〈keyX, [valueX1, ... , valueXnx] 〉 records,
each hosting all the values appearing in the 〈key, value〉 pairs in input relative
to the same key keyX. The stage should meet the requirements of a stream
accumulator stage1.

1actually, all but the requirement relative to input/output types: in the stream accumulator stage
these types should match, in this case the input type will be Tkey ×Tvalue while the output type will
be instead Tkey × (Tvalue)

?
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• Key reduction. The third stage should process each item 〈keyX, [valueX1, ...
, valueXnx]〉 summing up the values to produce an output item 〈keyX, sum-
ValueX〉. This stage should meet the requirements relative to farm workers,
that is:

– No global variables modified. The code producing the 〈key, value〉
pairs out of the input data should not modify any global variable.

• Output tuple. The output of this pattern should be a set of unique key value
tuples where the keys are the ones produced during the first stage and the
values are those computed (for each key) during the reduction stage.

It is worth pointing out that a mapreduce pattern may be discovered also from
code in two stages (only) where the first is the very same first stage of the three
stage decomposition discussed above (and therefore has the same requirements),
and the second one is a stage computing the accumulation of values for the same
key while gathering them from the input pairs, being de facto the union of the
second and third stages of the three stage decomposition just discussed. In this case
this second stage will need all the requirements of a stream accumulator pattern are
meet.

3.3.5 Divide and conquer

This pattern computes a problem for which a) the solution for some base cases
are known and b) non-base case problems may be divided into a collection of sub-
problems and the solution of the non-base case problems may be computed out of
the solutions of the sub-problems. During the refactoring process, the introduction
of this pattern implies the use of a splitter and merger patterns. More details about
this pattern can be found in Deliverable 1.2, Section 3.3.5.

Requirements The requirements of the divide an conquer pattern should deter-
mine whether there exists a portion of the code calling a recursive function whose
body is logically divided in stages:

• Termination. A boolean parameter is evaluated on the input parameter. If
true, a function of the input parameter is returned as function result.

• Divide phase. The input parameter is processed to produce a set of parame-
ters of the same type.

• Recursive call. A loop iterates over all the parameters in the set recursively
calling the procedure with one item in the set as input parameter.

• Conquer phase. A loop iterates over the results of the recursive calls to
“accumulate” (conquer) the function result.

The requirements of the different phasses may be described as follows:
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• All phases. No global variables are modified.

• Recursive call and conquer phase. These are loops with no break statement
in the loop body.

• Divide phase. The input type is Tinput and the output type is (Tinput)?.

3.4 Notes on code requirements for pattern discovery

The requirements on the source code listed in the sections above are relative to
the discovery of patterns whose business logic code is actually sequential code.
In the most general case, parameters of the patterns may also be other patterns.
As an example, a pipeline stage may be implemented as a map (or farm) pattern
to further improve parallelism explotiation and, consequently, performances in all
those cases where the pipeline stage results to be a bottleneck.

As such, the requirements listed above refer to properties that must be ensured
on the sequential code such as the code begin side effect free or with no control flow
break statements. A further requirement may be added to most pattern requirement
sections stating that each one of the pattern functional components may in turn be
a pattern and therefore should recursively fulfill the corresponding requirements.
The pipeline stage modelled after a farm should therefore ensure the requirements
for the farm workers are fulfilled and this automatically qualifies the farm pattern
as a pipeline stage fulfilling the pipeline stage requirements.

In some cases, the identification of loops as potential places where patterns
may be discovered is to be intended as a particular case of a more general situation
where separate portions of code produce “streams” or “data collections” that are
subsequently processed by stream or data parallel patterns. As an example, in a
code structured such as follows:

TypeA x[N];
TypeB y[N];

for(int i=0; i<N; i++) {
// fill some vector
x[i] = ...;

}
for(int i=0; i<N; i++) {

// process vector items (independent iterations)
y[i] = f(x[i]);

}

we main aim at discovering two distinct pattern structures:

• a stream generator pattern, followed by a farm pattern computing function
f, or
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• a single pipeline pattern with two stages corresponding to the two for loops
in the code.

Whatever the pattern discovery results is, the refactoring rules will eventually be
able to reconduct the first “patternization scheda” to the second one and viceversa.

Last but not least, it is worth pointing out that there are particular properties that
must be ensured in a number of different patterns, such as the absence of break
statements, the absence of statements modifying global variables, or the absence of
RAW dependencies in loop iterations. Such properties clearly require special code
to be tested quickly and effectively on those portions of code individuate as pattern
“candidates”.
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4. Parallel pattern discovery tool

In this part of the document we propose the Parallel Pattern Analyzer Tool (PPAT)
as a prototype tool for detecting parallel patterns of the RePhrase project in se-
quential applications. The features of this tool are the following: i) it is completely
independent of the refactoring tool used, since it identifies parallel patterns; ii) it
performs a static analysis and avoids the use of profiling techniques, thus becomes
much faster than other approaches; and iii) it guarantees that parallel patterns de-
tected comply with a series of requirements that prove the correctness of the solu-
tion.

4.1 Related work

In the current state-of-the-art, there can be found multiple works related to au-
tomatic detection and refactoring of sequential source codes based on parallel
patterns. However, this task is not simple and can be treated using different ap-
proaches. At this time, tools developed to detect the pipeline parallel pattern on
sequential codes are tied to the programming language used and most of them re-
quire profiling techniques in order to check associated data-flow dependencies.

In the literature, we find tools similar to ours based on static analyses of the
code to detect parallel patterns, but that require profiling techniques during the
identification step. For example, the approach developed by Sean Rul et al. [22]
leverages LLVM to instrument loops in the sequential code and performs an LLVM-
IR profiling analysis to decide whether a loop is a pipeline or not. After that, it
transforms the code to produce a parallel source code. This tool, however, presents
some limitations: it needs to execute the target application several times to profile
it, and it is tied to the C programming language. Contributions such as the work
by Molitorisz et al. [19], detect statically potential pipelines, nevertheless they do
not check for dependencies, so the correctness of the resulting parallel applica-
tion cannot be guaranteed. Instead, it checks for data races and dependencies on
a subsequent execution and profiling process. Contrary to that, PoCC [1], a flexi-
ble source-to-source compiler using polyhedral compilation, is able to detect and
parallelize loops, however it does not take into account high-level parallel patterns,
e.g., maps, stencils, pipelines etc.

On the other hand, we encounter tools that detect parallel patterns using only
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profiling techniques. For example, DiscoPoP in [10, 14] leverages dependency
graphs in order to detect parallel patterns. Nevertheless, the tool has some draw-
backs: the profiling techniques have a non-negligible execution time and mem-
ory usage. A similar approach by Tournavitis et al. [28] detects and transforms
legacy code into parallel using parallel patterns. Alternatively, FreshBreeze [13],
a dataflow-based execution and programming model and computer architecture,
leverages similar static loop detection techniques that analyze dependencies and
transform parallelizable loops using the task model and tree-structured memory
proposed by the system. It is important to remark that approaches based on static
analysis are not very extended in the area, since analysis of data dependencies at
compile-time becomes a much more complex task. Instead, some works leverage
functional languages. For instance, István Bozó et al. [4] develop a tool that detects
parallel patterns in applications written in Erlang. Compared to other languages,
Erlang’s features make the detection process much simpler. Nonetheless, the tool
requires profiling techniques in order to decide which pattern suits best for a con-
crete problem. In order to transform legacy code using parallel patterns, different
methodologies have been proposed. For example, Massingill et al. [15] present a
reengineering process to aid the parallelization process of legacy code. In a similar
way, Jahr et al. [12] propose a pattern-supported parallelization approach, i.e, a
methodical model-based design approach to be executed by an engineer or soft-
ware developer. This workflow allows introducing parallelism in an application
only by defining building blocks [16].

The parallel pattern detector prototype presented in this report differenciates
from the previous examples in different aspects: i) it leverages a static analysis
without requiring any previous execution or profiling techniques, iii) it checks de-
pendencies due to memory accesses statically, i.e., at compile-time, ii) it supports
both C and C++ programming languages, iii) it follows a modular design that al-
lows us to easily extend its functionality for detecting pattern.

4.2 Abstract Syntax Trees for Pattern Discovery

In this section we describe the Abstract Syntax Tree (AST), as a syntactic structure
representation of the source code in a tree model and normally generated by the
compilers at compile time [20]. These trees contain information about variables,
operators and functions used in the source code. Figure 4.1 shows an example of
source code along with its associated AST. In this work, we leverage the Clang
compiler library to develop a tool that uses its AST to analyze code statically and
determine whether a loop can be represented as a pipeline pattern.

We describe next the definitions of the kind of references in order to clarify
concepts used in the successive sections. A basic interpretation of these kinds,
based on the C++11 standard [18], are the following:

• Lvalue: It usually appears on the left-hand side of an assignment expression
and designates a function or an object, being addressable but not assignable.
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Figure 4.1: Example of Abstract Syntax Tree for a given source code.

• Rvalue: It might appear on the right-hand side of an assignment expres-
sion and defines a temporary (sub)object or a literal value, thus being non-
addressable but assignable.

In this work, we have redefined these concepts in order to reflect the use of
references in the code. Therefore, we refer to Rvalue as a read-only reference,
while Lvalue designates any modifiable value. In next sections, we explain the use
of these definitions within the Parallel Pattern Analyzer Tool.

4.3 Parallel Pattern Analyzer Tool

In this section we introduce the Parallel Pattern Analyzer Tool (PPAT) in detail.
The implementation of this tool leverages the Clang library to generate the AST
and walk through it in order to collect relevant information about the source code.
Afterwards, a series of modules checks the set of requirements set in the previous
chapter for the different parallel patterns in order to annotate the code that can be
refactored into parallel patterns. For brevity reasons, we only present the module
for detecting the parallel pipeline pattern.

Figure 4.2 depicts the general workflow diagram of PPAT. First, the tool re-
ceives the sequential source code files that should be analyzed. Next, the following
steps are executed:

1. Loop detection. This step detects potential loops that can be refactored into
a parallel pattern. Basically, it iterates the AST, extracts loop-related sub-
trees and gathers information about possible variables, function calls, nested
loops, conditional statements, etc. coded into the loops. On the other hand,
it collects information about the functions implemented in the user code.

2. Feature extraction. This step leverages structures collected in the previous
step in order to extract specific features about iterators, variable declarations,
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Figure 4.2: Workflow diagram of PPAT.

references, function calls, inner loops, memory accesses, operations, etc.
Next, for each statement encountered, we store, using a set of C++11 struc-
tures, information about location on the original code, variable and functions
name, variable kinds (Lvalue or Rvalue) and global storage references.

3. Check arguments reference kind. The last step checks whether the kinds
of variable references passed as arguments in functions can be determined
or not. In some cases, it is not possible to know statically if the kind of
arguments passed by reference is Rvalue or Lvalue. When this occurs, the
tool performs the following actions:

(a) If the function code is available or the function is implemented on the
user code, it is possible to check the set of arguments and assign the
right variable kind (Lvalue or Rvalue). If the argument is not modi-
fied, it is considered as Rvalue. In contrast, if there exist write accesses
to the variable, the Lvalue is assigned as the variable kind. Alterna-
tively, if there is a RAW dependency on the variable, the kind is set
to L/Rvalue, since the argument can generate a potential feedback be-

29



tween iterations.

(b) On the contrary, if the function cannot be accessed, it is not possible to
check the actual variable kind. Thus, the tool takes a conservative deci-
sion: it set the arguments kinds always to L/Rvalue. Despite of this, it
inserts the function name and arguments kinds into a dictionary file in
order to improve the detection process in future analysis. Afterwards,
the user can eventually manually modify this dictionary to set the right
arguments kinds of these specific functions.

Finally, marked loops are passed to the different pattern analyzer modules re-
sponsible for detecting parallel patterns of the RePhrase project. Modules attached
to PPAT annotate loops that can be refactored into accepted parallel patterns.

4.4 Use case: Detection of pipelines

In this section we present an example of module for PPAT able to detect the pipe-
line parallel pattern. First, we state the set of attributes defined for annotating
pipeline patterns. Next, the concrete internal workings the module part of PPAT
are described in detail. Basically, the module works in two phases: i) it checks the
set of constrains set for the pipeline pattern, and ii) it annotates loops that can be
refactored into this parallel pattern.

4.4.1 Attributes for annotating parallel patterns

The annotation of pipeline patterns along with their stages is performed using a set
of specific C++11 attributes [11]. Specifically, we define a new set of C++11 at-
tributes for defining parallel patterns as annotations in the sequential source codes.
In this case, we list the attributes for annotating pipeline parallel patterns:

• rph::pipeline: It identifies a loop that can be transformed as a pipeline.
This attribute incorporates an argument that identifies the pipeline within the
application, so as to know which stages are related to a specific pipeline.

• rph::stream: This attribute works together with
rph::pipeline and identifies the data streams used across stages. Its
arguments are the shared variables themselves.

• rph::stage: It identifies a code section as a stage of the pipeline, includ-
ing an argument that unequivocally identifies the stage.

• rph::plid: This attribute operates with rph::stage and includes an
argument that indicates to which pipeline the stage belongs to.

• rph::in: This attribute comes along with rph::stage and references
the input variables passed as arguments.

30



• rph::out: It works along rph::stage and references the output vari-
ables given as arguments.

Using the aforementioned attributes, a refactorization tool would be able to
transform annotated loops into parallel pipelines. Furthermore, they allow to com-
pletely separate the detection and refactorization processes, thus different tools can
be used in the last step.

4.4.2 Implementation of the pipeline module

In this section we detail internal workings of the pipeline detection module. Specif-
ically, this module is comprised of the three following steps:

1. Stage detection. This step is responsible for identifying potential stages in
which a loop body can be split. The strategy creates a new stage each time
a function call or an inner loop is found in the main loop. Afterwards, for
each stage encountered, it checks whether the stage is fed with, at least, one
previous stage output. If this requirement is not met, the complete stage is
merged with the previous one until all stages comply with this requirement.

This strategy assumes that each stage has a substantial amount of work, how-
ever actual function calls or nested loops inside a stage might have a negli-
gible workload, thus producing unbalanced stages. In the future, we plan to
improve this strategy by computing an estimation of the instructions inside
each stage, so that the workload between stages can be balanced in a more
efficient way.

2. Checking the pipeline requirements. This step is responsible for checking a
series of requirements that determine whether a loop along with its stages can
be refactored into a parallel pipeline. These requirements may be described
as stated in Sec. 3.2.2:

(a) No global variables modified. There should not exist instructions that
modify global variables in the loop.

(b) No RAW dependencies. There should not exist RAW dependencies of
variables used simultaneously within stages of the pipeline.

(c) Multiple stages. The loop should be able to be divided in more than
one stage.

(d) No break statements. There should not exist break statements (i.e.
continue, break or return) in the loop, as they cannot be par-
alelized. However, they can be allowed in inner scopes of the main
loop.

The pipeline detection approach guarantees that every single pipeline de-
tected in the source code meets all the aforementioned requirements. Any
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other pipeline that does not comply with any of them is automatically dis-
carded by the tool.

3. Annotation. The last step the tool is responsible for annotating pipelines
found. We leverage the information collected during the preceding step in
order to print out attributes on the actual pipelines. Loops discarded by the
process are commented with a message that tells the user the reason why it
was not considered to be pipeline.

4.5 Evaluation

In this section we perform an experimental evaluation of PPAT using a series of
sequential scientific benchmarks in order to analyze how many loops can be refac-
tored into parallel pipelines, using the module described in the previous section.
To do so, we have used the following hardware and software components:

• Target platform. The evaluation has been carried out on a server platform
comprised of 2× Intel Xeon Ivy Bridge E5-2695 v2 with a total of 24 cores
running at 2.40 GHz, 30 MB of L3 cache and 128 GB of DDR3 RAM, while
running Linux Ubuntu 14.04.2 LTS OS on a 3.13.0-57 Linux kernel.

• Software. The compilation of PPAT has been performed using the LLVM
compiler infrastructure v3.7.0, with its Clang compiler and the extended at-
tributes from RePhrase.

• Benchmarks. To evaluate PPAT, we used the sequential versions of the fol-
lowing set of scientific benchmarks: PARBOIL [25], RODINIA [24], NAS
Parallel Benchmarks (NPB) [3] and BIOPERF [2].

The evaluation methodology is based on a comparison between a manual in-
spection and an automatic one, using PPAT, of the loops appearing in the bench-
mark codes. To conduct a double-blind study, the manual inspection is performed
before the automatic one, so that the manual results are not biased by those from
PPAT. For each benchmark analyzed, we collect the number of total lines and loops
found, number of pipelines detected (manually and automatically) and a ratio be-
tween these two last metrics. So, if this ratio greater than 1, it indicates that PPAT
found more pipelines than the human inspection, while if it is lower than 1, it stands
for the opposite.

Finally, we discuss the results collected during the manual inspection with
those obtained by PPAT in order to demonstrate the quality of the pipeline detec-
tion process. In the following, we analyze the results obtained for each benchmark
evaluated.
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Table 4.1: Statistics for the evopro benchmarks.
Test Lines Loops PPAT Manual
ConfigManager.cpp 1143 34 2 0
MeasProcessor.cpp 2060 79 6 3
RCBProc.cpp 123 7 1 2
mainStuff.cpp 188 11 0 2

4.5.1 Results for evopro benchmark

PPAT tool was tested on the main code base of evopro eRDM use-case. PPAT ran
successfully with only minor errors in some renaming and the result is summarised
in Table 4.1.

Table 4.1 shows only those files where manual parallelisation was reasonable
and the comparison is valuable. As can be seen, the overlap between the auto-
matic pipeline localisation and the manual parallelisation effort is not consistent:
sometimes the tool is too eager, sometime it is not effective enough to find all the
potential places of pipelines.

Regarding the efficiency of the tool, for example in RCBProc.cpp in List-
ing 4.3, the pipeline was correctly localized, but its second stage could have been
further split in line 120.

Figure 4.3: PPAT annotations for a RCBProc.cpp snippet.

Although in MeasProcessor.cpp, shown in Listing 4.4, more than enough
pipelines have been identified, some of the computationally expensive parts of the
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code have been disregarded by PPAT. For example, between line 1404 and 1407
the inner loop could be pipelined by two separate stages. Maybe due to the encom-
passing if statement the opportunity has not been notified.

Figure 4.4: Missing PPAT annotations for a MeasProcessor.cpp snippet.

In a similar fashon, Listing 4.5 illustrates that in file mainStuff.cpp, an-
other pipeline could not be identified by the tool for the for loop in line 165; how-
ever it does represent some heavy computation within the application. Although
the loop iterations can be executed in parallel and even some minor manual refac-
toring has been performed (the section between lines 169-174 was commented out
in order to merge the two for loops and to increase the number of possible pipeline
stages), the result remained the same.

In summary, PPAT usually finds valid pipelines and annotates them properly.
However, the pipelines found in our evaluation do not correspond to the places in
code that require a lot of computation. In other words, PPAT treat each candidate
loops equally, hence the introduction of performance related metric may be needed
for its practical industry usage in order to locate real parallelisation hot-spots in
code.

4.5.2 Results for the PARBOIL benchmark

The first benchmark used to test PPAT is the PARBOIL benchmark suite, and de-
noted as PARBOIL. We employ the sequential C codes for each test from the PAR-
BOIL suite in order to detect potential pipelines. Table 4.2 presents the results ob-
tained for the PARBOIL tests. As shown in the table, the number of pipelines found
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Figure 4.5: Missing PPAT annotations for a mainStuff.cpp snippet.

from both manual and PPAT inspection are perfectly matching, thus the pipeline
detection quality of PPAT is equal to that obtained manually. On the foregoing, we
perform a deeper analysis of these results.

Table 4.2: Statistics for the PARBOIL benchmarks.
Test Lines Loops PPAT Manual Ratio
bfs 237 6 0 0 -
cutcp 798 19 0 0 -
histo 231 5 0 0 -
sad 643 37 1 1 1
sgemm 218 8 0 0 -
spmv 216 3 0 0 -
stencil 229 7 0 0 -
tpacf 383 8 0 0 -

We start with the bfs test. For this special case, PPAT did not find any pipe-
line: it discarded the potential ones, since it is not possible to ensure whether they
are real or not. The reason is that PPAT cannot check at compile time if there
are loop carried dependencies between iterations. In other words, if there have
been accesses to a specific position of an array from two different iterations. In
this cases, the tool uses a conservative approach and comments the loop with the
specific reason that prevented PPAT from annotating it.

Listing 4.1 illustrates an example of a pipeline that PPAT was not able detect
due to potential dependencies between iterations, only met at runtime. Analyzing
line 6, index receives the value from the function wavefront.front(), that
is only known at run time. Afterwards, in line 23, this value is used for accessing
the array color, so it cannot be guaranteed that there are no conflicts between
iterations. As it can be seen, PPAT printed a comment above the while statement
(lines 2–4) specifying the arrays that caused such issues.

Next, we focus on the sad test. In this case, the code contains a pipeline
consisting of 7 stages that passes the data stream from one stage to the next, thus
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Listing 4.1: PPAT annotations for a bfs snippet.

//It isn’t a Pipeline
//Feedback: color
//Feedback: color
//Feedback: h_cost
while(!wavefront.empty()){

index = wavefront.front();
wavefront.pop_front();
//It isn’t a Pipeline
//Feedback: color
//Feedback: h_cost
//Less than 2 stages
for(int i=h_graph_nodes[index].x;
i<(h_graph_nodes[index].y +
h_graph_nodes[index].x); i++)
{
int id = h_graph_edges[i].x;
if(color[id] == WHITE){
h_cost[id]=h_cost[index]+1;
wavefront.push_back(id);
color[id] = GRAY;

}
}

color[index] = BLACK;
}

meeting the requirements stated in Section 4.4. An issue that we found for this
test is that it internally uses C macros. Thus, Clang frontend receives a code from
the preprocessor in which all macros have been replaced by their corresponding
values, possibly having shifted lines with respect to the original code. Because of
that, PPAT it is not able to insert comments/annotations on the proper locations.
The problem however, comes from the Clang functions that obtain the code loca-
tions, that work with respect to the original code and not with the preprocessed
one. To bypass this issue, we manually replace macros in the source code by their
corresponding values. Being aware that this is not the best solution, we plan to
address this issue in a future version of PPAT.

The rest of tests analyzed do not present any pipeline. Nevertheless, they con-
tain other parallel patterns such as reduce, farm or stencil.

4.5.3 Results for the RODINIA benchmark

The second benchmark tested is RODINIA. Again, we leverage the sequential ver-
sions of the tests contained in the RODINIA benchmark suite to evaluate PPAT.
Table 4.3 shows the results obtained for this benchmark. As can be seen, there are
only two tests in which PPAT found potential pipelines: cfd and mummergpu. In
other tests, neither PPAT nor us find pipeline patterns. However, we observe farms
as the major parallel patterns encountered within the source codes.

As an example, Listing 4.2 presents an annotated pipeline by PPAT found in
the cfd test. As can be seen, the pipeline is parallelizable, since it meets all re-
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Table 4.3: Statistics for the RODINIA benchmarks.
Test Lines Loops PPAT Manual Ratio
backsprop 764 28 0 0 -
bfs 197 7 0 0 -
b+tree 2,768 80 0 0 -
cfd 2,598 78 4 4 1
heartwall 1,757 54 0 0 -
kmeans 1,806 20 0 0 -
lavaMD 376 10 0 0 -
mummergpu 8,468 44 1 1 1
nn 234 8 0 0 -
nw 292 12 0 0 -
particlefilter 773 44 0 0 -
streamcluster 2,996 48 0 0 -

quirements stated in Section 4.4. Note that PPAT has included RePhrase attributes
accordingly, thus representing stages and other parameters related to the pipeline.

4.5.4 Results for the NAS benchmark

The NAS benchmark is the next one used to evaluate PPAT. This benchmark suite
is comprised of a set tests written in C. Table 4.4 shows the results obtained by
PPAT. As can be seen, PPAT finds several cases in which there are potential pipe-
lines. In most cases, PPAT finds the same number of pipelines that the manual
analysis, however there are other cases in which PPAT is not able to detect some of
them, e.g., for the FT test. This is due to the loops contain dynamic dependencies
that PPAT cannot meet statically. On the contrary, for some other cases PPAT finds
pipelines where the human inspection cannot, e.g., in DC and UA tests.

Table 4.4: Statistics for the NAS benchmarks.
Test Lines Loops PPAT Manual Ratio
CG 5,374 45 1 1 1
DC 3,227 104 2 1 2
EP 324 8 0 0 -
FT 1,056 41 2 3 0.6
IS 856 16 0 0 -
MG 1,547 80 1 1 1
SP 4,251 250 1 1 1
UA 9,677 478 3 2 1.5

Listing 4.3 shows an example of code from the EP test in which PPAT has
discarded the loop to be parallelized using a concurrent pipeline pattern. This is
due to two different reasons. First, this loop presents feedback on the different
variables (sy, sx and q in lines from 15 to 17), thus violates requirement 2b. On
the other hand, a global value is being written and read, therefore producing side
effects and violating requirement 2a. As can be seen in line 15, the global vector
q is accessed for read and write on the same position l. In the end, since PPAT
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Listing 4.2: PPAT annotations for a cfd snippet.
[[ rph::pipeline(0) , rph::stream(density, density_energy, velocity, speed_sqd,

(cont.)pressure) ]]
for(int i = 0; i < nelr; i++)
{

float density, density_energy, speed_sqd, pressure, speed_of_sound;
float3 velocity, momentum;
[[ rph::stage(0), rph::plid(0), rph::out(density, density_energy, velocity) ]]
{

density = variables[NVAR*i + VAR_DENSITY];
momentum.x = variables[NVAR*i + (VAR_MOMENTUM+0)];
momentum.y = variables[NVAR*i + (VAR_MOMENTUM+1)];
momentum.z = variables[NVAR*i + (VAR_MOMENTUM+2)];
density_energy = variables[NVAR*i + VAR_DENSITY_ENERGY];
compute_velocity(density, momentum, velocity);

}
[[ rph::stage(1), rph::plid(0), rph::in(velocity), rph::out(speed_sqd) ]]
speed_sqd = compute_speed_sqd(velocity);

[[ rph::stage(2), rph::plid(0), rph::in(density, density_energy, speed_sqd), rph
(cont.)::out(pressure) ]]

pressure = compute_pressure(density, density_energy, speed_sqd);

[[ rph::stage(3), rph::plid(0), rph::in(density, pressure), rph::out(
(cont.)speed_of_sound) ]]

speed_of_sound = compute_speed_of_sound(density, pressure);

[[ rph::stage(4), rph::plid(0), rph::in(speed_sqd, speed_of_sound) ]]
step_factors[i] = float(0.5f) / (std::sqrt(areas[i]) * (std::sqrt(speed_sqd) +

(cont.)speed_of_sound));
}

cannot ensure if these accesses are iteration-independent, it decides not to consider
the loop as a parallel pipeline due to possible side effects.

For the IS test, PPAT does not detect any pipeline because all loops defined for
this test have not enough compute to perform or do not have, at least, two stages.
Therefore, it violates requirement 2c. For instance, Listing 4.4 shows a loop that
PPAT discarded due to it cannot be divided in two stages.

4.5.5 Results for the BIOPERF benchmark

The last set of test used to evaluate PPAT is the BIOPERF, a benchmark suite com-
prised of C tests to evaluate high-performance computer architecture on bioinfor-
matics applications. Table 4.5 presents the results obtained by both PPAT and
manual inspections of the code. As can be seen, the tool detects more pipelines
than human inspection for the clustalw_smp and Hmmer tests. Indeed, the ra-
tios obtained for these benchmarks are greater than 1. This is due to source codes
from BIOPERF (in the range of thousands of lines) that are much larger than in
other tests and, because of that, the detection of pipelines just by visual inspection
becomes a much more complicated and error-prone task. We believe that, in such
cases, a tool like PPAT can tremendously aid developers in detecting such parallel
patterns.
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Listing 4.3: PPAT annotations for a loop from the EP test.

//It isn’t a Pipeline
//Feedback: sy
//Feedback: sx
//Feedback: q
//GLOBAL VALUE USED
for (i = 0; i < NK; i++) {

x1 = 2.0 * x[2*i] - 1.0;
x2 = 2.0 * x[2*i+1] - 1.0;
t1 = x1 * x1 + x2 * x2;
if (t1 <= 1.0) {

t2 = sqrt(-2.0 * log(t1) / t1);
t3 = (x1 * t2);
t4 = (x2 * t2);
l = MAX(fabs(t3), fabs(t4));
q[l] = q[l] + 1.0;
sx = sx + t3;
sy = sy + t4;

}
}

Listing 4.4: PPAT annotations for a loop from the IS test.

//It isn’t a Pipeline
//Less than 2 stages
for (i=0; i<NUM_KEYS; i++)
{

x = randlc(&seed, &a);
x += randlc(&seed, &a);
x += randlc(&seed, &a);
x += randlc(&seed, &a);
key_array[i] = k*x;

}

Table 4.5: Statistics for the BIOPERF benchmarks.
Test Lines Loops PPAT Manual Ratio
CE 4,316 168 3 3 1
clustalw_smp 28,428 929 14 8 1.75
Hmmer 26,153 423 12 11 1.09
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5. Conclusions and future works

In this deliverable, we have reviewed the state-of-the-art about and existing pro-
gram shaping and pattern detection tools and described the set of program shaping
techniques and methods in order to refactor sequential C++ programs into hygienic
C++ code with equivalent functionality. Next, we have described for each pattern
of the initial set of RePhrase along the conditions and requirements that need to
be satisfied in order to be introduced in C++ applications. Finally, we presented a
prototype pattern discovery tool that instances of pipeline pattern candidates within
C++ applications at compile time.

A tool contribution presented in this deliverable is the Parallel Pattern Analyzer
Tool (PPAT), as a prototype tool for discovering parallel patterns in sequential ap-
plications, as proposed in the WP2 in the RePhrase project. PPAT has several
features: It is completely independent of the refactoring tool used since it identifies
parallel patterns. Furthermore, it performs a static analysis and avoids the use of
profiling techniques and guarantees that parallel patterns detected comply with a
series of requirements that prove the correctness of the solution. As a future work,
we plan to extend the Parallel Pattern Analyzer tool to include patterns from the
advanced set of patterns from the RePhrase project. Furthermore, we will add
support in order to decide which is the most suitable pattern to be introduced when
more than one pattern can be a candidate for a given portion of code.
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