
Project no. 644235

REPHRASE

Research & Innovation Action (RIA)
REFACTORING PARALLEL HETEROGENEOUS RESOURCE-AWARE APPLICATIONS – A

SOFTWARE ENGINEERING APPROACH

Initial Report on Evaluation for Reliability, etc.
D6.5

Due date of deliverable: 30.06.2017

Start date of project: April 1st, 2015

Type: Deliverable
WP number: WP6

Responsible institution: PRL
Editor and editor’s address: Evgueni Kolossov, PRL

Version 1.0

Project co-funded by the European Commission within the Horizon 2020 Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Change Log

Rev. Date Who Site What
1 2/06/17 Evgueni Kolossov PRQA Created original document
2 20/06/17 Evgueni Kolossov PRQA Incorporated feedback and revised document
3 29/06/17 Michael Rossbory SCCH Minor Improvements

1

Executive Summary

This deliverable is the report on initial evaluation of the applicability of Rephrase
methodology and tools for the test projects ported by other partners in D6.2, with
respect to Rephrase code quality goals of reliability, robustness, resilience, integrity
and adaptivity as described in D.6.2.

We use the PRL QA-Verify tool to evaluate the initial use case code, thus deriv-
ing an initial baseline. A final analysis takes place after the Rephrase approach has
been applied, and is compared to the initial baseline. We compare the quality of the
use case before and after application of the Rephrase approach, using the metrics
that are developed in D6.1 to cover appropriate impact of the Rephrase methodol-
ogy and tools. This is the initial evaluation. In D6.7 a final report will be delivered
on evaluation of the use cases and methodology for these software quality criteria,
taking into account the updated applications in D6.6.

The relationships with other deliverables shown in the Figure below:

Figure 1: Dependencies of D6.5

2

Contents

Executive Summary . 2

1 Introduction 4

2 Static Analysis Metrics 6
2.1 Reliability . 6

2.1.1 Knots . 7
2.1.2 Nesting and Cyclomatic Complexity 7
2.1.3 Halstead metrics . 10
2.1.4 Function Unreliability Index 12

2.2 Integrity . 13
2.2.1 Unreachable Code . 13

2.3 Class-based Metrics . 13

3 Run Time Metrics 14
3.1 Time, Memory and Synchronisation 14
3.2 IPC and Cache Performance . 18
3.3 Adaptivity . 19

3.3.1 Instructions per Cycle 19
3.3.2 Cache Misses per Instruction 20
3.3.3 Cache Miss Rate . 20

4 Future Work 21

5 Conclusion 23

3

Chapter 1

Introduction

As mentioned in D6.2 report, the main issue with the metrics mentioned in the
Executive Summary is the lack of knowledge about how to measure them via au-
tomated static analysis (ASA) tools:

• Reliability + Robustness + Adaptivity, mean time to failure (MTTF), and
mean time between Failures (MTBF).

• Resilience: validation correct and continued operation under injected prob-
lems, based on modelling the kind of problems the system is expected to
endure.

• Integrity (ratio between covered and total code elements): needs to be mea-
sured via integration with code coverage tools.

The evaluation is also a challenge to runtime analysis. Based on strict defi-
nitions it depends on failures being recorded, and doing so within a bounded and
practical amount of time. MTBF also depend on mean time to repair (MTTR)
whose applicability in software adds additional constraints/definitions which may
not be applicable for our use cases. There is limited uptake and agreement on such
evaluation in commercial software products. The Software Assurance Technology
Centre (SATC) at NASA defines Reliability as a "Quality attribute" (i.e. likelihood
of failure) and "analyzes the code for the structure and architecture to identify pos-
sible error prone modules based on complexity, size, and modularity". It relies
mainly on requirement analysis, static analysis metrics similar to those produced
by PRQA tools, and evaluation through testing of the number of errors in code and
rate of finding/fixing them - see Software Metrics and Reliability.

In the context of evaluating pre and post-refactoring of the use cases, the ap-
proach taken is likewise to rely on static analysis metrics exposed in D6.2 and
compound metrics based on them, in order to monitor the impact of the Rephrase
methodology on quality.

A mechanism is also described for upload of new metrics to the QA-Verify
tool for convenient comparison between snapshots. Some performance metrics are

4

https://www.unf.edu/~ncoulter/cen6070/handouts/minorreport/Rosenberg.html

provided on the Railway use case, for which PRL holds enough data to run a CPU-
based binary. Additional metrics obtained from tools owned by the partners and/or
obtained from Rephrase tools such as the PAPI-based tool described in the D3.2
report (which deals with detection of violations of extra-functional properties, such
as performance or energy consumption) can be uploaded in the format specified in
this document to enhance the evaluation.

5

Chapter 2

Static Analysis Metrics

The metric result exposed from the Railway use case on the CPU versions with
sequential and parallel code(FastFlow). We are looking at 2 functions that have
been parallelised:

Figure 2.1: preprocessDSP function

Figure 2.2: processCurves function

2.1 Reliability

The term "Reliability" is meant to also cover Robustness and Resilience, since
as discussed above these metrics cannot be discriminated through static analysis
alone, and the three of them contribute to the quality attribute.

6

2.1.1 Knots

Knot count metric is implemented inside PRL software (A.2.13 STKNT: Knot
Count). This is the number of knots in a function. This metric measures the com-
plexity and unstructuredness of a moduleâĂŹs control flow. A knot is a crossing
of control structures, caused by an explicit jump out of a control structure either by
break, continue, goto, or return. STKNT is undefined. Details and corresponding
graphs can be found in D6.2 report.

Note: tables such as the one below contain values directly taken from the latest
snapshots currently available on the QA-Verify web interface for Rephrase.

Table 2.1: Knot counts for Sequential and Parallel versions
Function Sequential CPU version Parallel CPU version

preprocessDSP 0 0
processCurves 0 0

From this table we can see that parallelisation did not introduce any difference
on the knot counts.

2.1.2 Nesting and Cyclomatic Complexity

Description for these metrics can be found in D6.2 report.

2.1.2.1 Deepest Level of Nesting (STMIF)

Table 2.2: STMIF for Sequential and Parallel versions
Function Sequential CPU version Parallel CPU version

preprocessDSP 4 1
processCurves 3 3

Parallelisation removes 3 levels of nesting, as can be seen here: preprocessDSP
sequential version has 4 level of nesting with 3 for loops and 1 if loop (Figure 2.3).

preprocessDSP Parallel version has only 1 for loop (Figure 2.4).

The situation is different for processCurves function where it shows 3 levels of
nesting with 2 for loops and 1 if loop (Figure 2.5).

processCurves Parallel version also shows 3 levels of nesting, but only for the
initialization code (Figure 2.6).

7

Figure 2.3: Sequential nesting preprocessDSP

Figure 2.4: Parallel nesting preprocessDSP

Figure 2.5: Sequential nesting processCurves

8

Figure 2.6: Parllel nesting processCurves

9

It can therefore be said that the nesting has overall been reduced in the parallel
version as it applies to less code.

2.1.2.2 Cyclomatic complexity (STCYC)

Description of STCYC can be found in D6.2 report.

Table 2.3: Cyclomatic complexity for Sequential and Parallel versions
Function Sequential CPU version Parallel CPU version

preprocessDSP 9 6
processCurves 4 5

Cyclomatic complexity for preprocessDSP function has reduced from 9 to 6
consistently with the 3 level of nesting reduction discussed above. The code out-
side the loop e.g. RCB decimation, JSON serialization, etc. is the same between
the two versions. ProcessCurves function shows an increase by 1 of cyclomatic
complexity due to the move of the setIsUsable call outside the main loop into its
own loop, as can be seen in previous screenshot. This can be remedied by moving
the initialization and finalization parts into separate functions (Table 2.3).

At project level, an increase of the Cyclomatic Complexity Across project (Re-
liability_STCYA, taken from STCYA to highlight contribution to Reliability) is
observed (Table 2.4). This is due to refactoring between classes (mainProc.cpp,
mainProc_transformed.cpp, MeasProcessor.cpp).

Table 2.4: Project level Cyclomatic complexity for Sequential and Parallel versions
Metric Sequential CPU version Parallel CPU version

Reliability_STCYA 1097 1104

2.1.3 Halstead metrics

STFDT: Number of distinct operators in a function; STFDN: Number of distinct
operands in a function; STFN1: Number of operator occurrences in function;
STFN2: Number of operand occurrences in function; Based on these metrics, we
can compute the Halstead metric "Number of delivered bugs" (Figure 2.7). For
more details see Halstead Metric.

10

https://en.wikipedia.org/wiki/Halstead_complexity_measures

Figure 2.7: Halstead metric

11

Results are shown in Table 2.5 (with B(n1,n2,N1,N2)).

Table 2.5: Halstead metric for Sequential and Parallel versions
Function Sequential CPU version Parallel CPU version

preprocessDSP B(26, 64,275,157) = 0.66 B(26,63,241,146) = 0.59
processCurves B(20,17,97,51) = 0.27 B(23,32,149,80) = 0.37

The result appear consistent with the points mentioned ealier on the respective
complexities of the functions.

2.1.4 Function Unreliability Index

Reliability_FuncUnreliabilityIndex is a compound metric, based on a quality for-
mulae documented in QA-Verify Help pages (Figure 2.8). It is a weighted unrelia-
bility index across all functions based on function complexity, residual bug count,
and adherence to coding standards. The number is to be interpreted relative to an
earlier snapshot, with lower values indicating higher quality and reliability.

Complexity parameter is a function of cyclomatic complexity and program size
(Cyclomatic complexity and Number of function calls). Residual bug count is
the number of critical diagnostics identified by PRL analyzers, which is both 5
in CPU and CPU Parallel versions. As such the parallelisation did not introduce
new critical issues. Adherence to coding standard is calculated as the total number
of remaining diagnostics (non-critical), which is 307 and 304 in CPU and CPU
Parallel respectively (Table 2.6).

Figure 2.8: Function Unreliability Index Help

Table 2.6: Function Unreliability Index for Sequential and Parallel versions
Metric Sequential CPU version Parallel CPU version

Reliability_FuncUnreliabilityIndex 1306 1314

12

This appears consistent with the increase in Reliability_STCYA discussed ear-
lier.

2.2 Integrity

2.2.1 Unreachable Code

Reliability_SumUNR is a compound metric computed as the project sum of function-
based Number of unreachable statements (STUNR)and can be considered as the
Integrity metric.

No unreachable statements was found in both sequential and parallel versions.
Additional integrity metrics can be uploaded to QA-Verify as described later

in this document. A suggested metric is code coverage, based on a comprehensive
test suite at the partnerâĂŹs site, which can be computed with a variety of free code
coverage tools. OpenCppCoverage is very easy to set up and it is cross-platform.

2.3 Class-based Metrics

STCBO: Coupling to Other Classes (STCBO), Deepest Inheritance (STDIT), and
Lack of cohesion within class (STLCM) are not directly applicable to the functions
examined.

Project level aggregation (average) for these metrics can be computed in QA-
Verify. Limiting the refactoring to the application of parallelisation patterns would
help evaluation.

13

https://opencppcoverage.codeplex.com/

Chapter 3

Run Time Metrics

3.1 Time, Memory and Synchronisation

Timing is captured at function-level by surrounding the function call with the tim-
ing code already available in code:

Figure 3.1: Timing

Figure 3.2: Timing Implementation

C++11 users can use the std::chrono library:

14

Figure 3.3: Timing chrono

15

The result is then fed into metric Elapsed real (wall clock) time used by the
function, in seconds (PFRTI)- Table 3.1.

Table 3.1: Speed comparison for Sequential and Parallel versions
Function Sequential CPU version Parallel CPU version

preprocessDSP 0.811 0.68
processCurves 0.105 0.043

This demonstrates speed up obtained from parallelisation. As per static anal-
ysis metrics, the data is captured for each snapshot into QA-Verify. Here is e.g.
some measurements summarized in a Top10 chart for CPU Parallel - Figure 3.4.

Figure 3.4: QA-Verify Speed Metrics

At program level, timing can be captured by surrounding main entry point, or
better still using the time command (Linux) or equivalent (see Fugure 3.5).

Figure 3.5: Command Line Speed Metrics

See later section about how to get these values into QA-Verify. The real, user
and sys fields are captured into 3 project-level metrics:

• Elapsed real (wall clock) time used by the process, in seconds (PPRTI)

• Total number of CPU-seconds used by the system on behalf of the process
(PPSTI)

• Total number of CPU-seconds that the process used directly in user mode
(PPUTI)

Results of these metrics are in Table 3.2.
PPUTI > PPRTI demonstrates speed up and parallelisation over multiple cores.

16

Table 3.2: Speed comparison for Sequential and Parallel versions
Metric Sequential CPU version Parallel CPU version

PPRTI 1.49 1.26
PPSTI 0.03 0.14
PPUTI 1.46 4.55

17

The other fields from time command output are captured into new metrics:

• Maximum resident set size of the process (PPMRS)

• Average resident set size of the process (PPARS)

• Number of times that the process was context-switched voluntarily (PPVCS)

• Number of times the process was context-switched involuntarily (PPICS)

Obtained results are in Table 3.3.

Table 3.3: Speed comparison for Sequential and Parallel versions
Metric Sequential CPU version Parallel CPU version

PPMRS 166432 166916
PPARS 0 0
PPVCS 1 11194
PPICS 9 476

PPMRS shows equivalent memory usage. An increased memory usage is usu-
ally an expected trade-off for higher throughput. A more extensive run and data
set help compute better average memory usage statistics, as can be seen also with
PPARS. PPVCS and PPICS demonstrate synchronisation taking place from paral-
lelisation.

3.2 IPC and Cache Performance

Instructions per cycle (IPC) and cache performance can be captured on Linux via
the perf utility (Figure 3.6).

Figure 3.6: Perf Utility Metrics

The fields are captured into new project-level metrics:

• Number of cache references recorded for the process (PPCRF)

• Number of cache misses recorded for the process (PPCMS)

• Number of instructions recorded for the process (PPINS)

18

• Number of cycles recorded for the process (PPCYL)

• Number of L1 data cache loads recorded for the process (PL1DL)

• Number of L1 data cache misses recorded for the process (PL1DM)

• Number of last level data cache loads recorded for the process (PLCDL)

• Number of last level data cache misses recorded for the process (PLCDM)

Obtained results are in Table 3.4.

Table 3.4: Perf Utility Metrics for Sequential and Parallel versions
Metric Sequential CPU version Parallel CPU version

PPCRF 5045616 13589476
PPCMS 1226942 2447481
PPINS 16226302699 20278243928
PPCYL 5772784832 17274070834
PL1DL 4305004173 7224434499
PL1DM 19264797 28447717
PLCDL 3349933 7963606
PLCDM 19264797 28447717

These in turn feed the new compound metrics described thereafter. They are
categorised as Adaptivity, as they are related to hardware resources.

3.3 Adaptivity

3.3.1 Instructions per Cycle

Number of instructions per cycle recorded for the process (Adaptivity_ProcessIPC)
is a compound metric computed as PPINS / PPCYL.

In Table 3.5 we can see that the IPC actually decreased after parallelisation in
this run, despite overall program speed up as seen earlier (PPRTI).

Table 3.5: Instructions per Cycle for Sequential and Parallel versions
Metric Sequential CPU version Parallel CPU version

Adaptivity_ProcessIPC 2.81 1.17

It is included here as it is a standard metric, but is sensitive to synchronisation
timings during execution and is problematic as a before/after parallelisation metric
- see e.g. IPC considered harmful for multiprocessor workloads

19

http://research.cs.wisc.edu/multifacet/papers/ieeemicro06_ipc.pdf

3.3.2 Cache Misses per Instruction

Ratio of cache misses to instructions recorded for the process (Adaptivity_ProcessMPI)
is a compound metric computed as PPCMS / PPCRF. Obtained results are in Table
3.6.

Table 3.6: Cache Misses for Sequential and Parallel versions
Metric Sequential CPU version Parallel CPU version

Adaptivity_ProcessMPI 0.008 0.012

The ratio of cache-misses to instructions will give an indication on how well the
cache is working; the lower the ratio the better (Ref.).Because of the relatively large
difference in cost between the RAM memory and cache access (hundreds cycles vs.
< 20 cycles) even small improvements of cache miss rate can significantly improve
performance. If the cache miss rate per instruction is over 5%, further investigation
is required.

Cache miss is slightly higher on the parallel version, but well under the sug-
gested 5% threshold.

3.3.3 Cache Miss Rate

L1 data cache load miss rate recorded for the process (Adaptivity_ProcessL1CMR)
is a compound metric computed as PL1DL/ PL1DM. Last level data cache load
miss rate recorded for the process (Adaptivity_ProcessLLCMR) is a compound
metric computed as PLCDL/ PLCDM. Cache miss rate recorded for the process
(Adaptivity_ProcessCMR) is a compound metric computed as PPCMS / PPCRF.

Obtained results are in Table 3.7.

Table 3.7: Cache Miss Rate for Sequential and Parallel versions
Metric Sequential CPU version Parallel CPU version

Adaptivity_ ProcessL1CMR 0.447 0.394
Adaptivity_ProcessLLCMR 32.413 26.673

Adaptivity_ProcessCMR 24.317 18.01

CPU Parallel in this run shows lower cache miss rates than the sequential ver-
sion.

20

http://developers.redhat.com/blog/2014/03/10/determining-whether-an-application-has-poor-cache-performance-2/

Chapter 4

Future Work

Due to confidentiality or set up requirements, PRL cannot run a binary for some
of the use cases or access to the full test data set to profile the binary. While static
analysis metrics produced by PRL provide valuable quality information, additional
quality and performance metrics can be computed at the partners site and/or using
Rephrase tools and fed into QA-Verify for integration into an existing QA-Verify
snapshot. Currently, analysis by PRL tools of a use case code automatically pub-
lishes an archive of metric information to a shared FTP repository accessible by
the partners. The metric report is an XML file - see Figure 4.1.

Figure 4.1: PRL Metrics Report

The sample above demonstrate 3 types of metrics:

• A project-level metric is listed under entity name ending with _PROJECT_ROOT_/cma.

• A file-level metric is listed under entity name containing the full path to the
file.

21

• A class-level metric is listed under entity name containing the qualified name
to the class/function e.g. ::sniutils::Config, which represents the Config class
in namespace sniutils. The type attribute is set to class. Likewise function-
level metric can be specified with type set to function.

All files, classes and functions in the project are listed in this file, because
there is always at least one associated metric produced by PRL analysers. To spec-
ify a description for a new metric, which serves as documentation in QA-Verify,
an optional attribute desc is used. For example, using the PAPI tool from D3.2,
a new function-level metric Requests for exclusive access to shared cache line
(PAPI_CA_SHR) is captured for the processCurves function (See Figure 4.2).

Figure 4.2: New Metric

The modified XML should be renamed after the target QA-Verify snapshot and
pushed onto metric_feed subdirectory at the base of the use case directory in the
Rephrase Git repository, e.g. erdm_cpu/metric_feed/20170630162516_CPU_PARALLEL.xml.

The new metric will automatically be integrated into the target QA-Verify snap-
shot, and can be subsequently analysed in QA-Verify as per the other metrics (Met-
ric Trend graph, Top10, etc.).

22

Chapter 5

Conclusion

Analysis of the static analysis and runtime metrics produced by PRL tools demon-
strate on the Railway sample that the application of Rephrase parallelisation pat-
terns maintain and sometimes enhance the target quality metrics , and enhance
performance. Other use cases will likewise be analysed and interpreted in order
to provide a fuller picture. A framework to introduce new metrics has been pre-
sented, giving the opportunity to leverage PRL tools to capture and analyse new
data produced by the partners in their testing environment, using their tools or D3.2
Rephrase tools, thus giving the opportunity to enhance the evaluation of reliability,
robustness, resilience, integrity, and adaptivity for the final D6.7 report.

23

	Executive Summary
	Introduction
	Static Analysis Metrics
	Reliability
	Knots
	Nesting and Cyclomatic Complexity
	Halstead metrics
	Function Unreliability Index

	Integrity
	Unreachable Code

	Class-based Metrics

	Run Time Metrics
	Time, Memory and Synchronisation
	IPC and Cache Performance
	Adaptivity
	Instructions per Cycle
	Cache Misses per Instruction
	Cache Miss Rate

	Future Work
	Conclusion

