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Executive Summary

This deliverable is the report about the initial porting process of the use cases Rail-
way Diagnosis, Medical Image Processing and Stochastic Local Search that have
been described in D6.3 using RePhrase tools and technologies that are currently
available. Applied technologies and tools are described and an initial performance
evaluation is presented. Most of this initial porting has been done manually using
the parallel patterns described in D2.1 and implemented in D2.4 using either pure
FastFlow or the newly developed GrPPI. Initial application of tools such as the
refactoring, pattern discovery or verification tool is described as far as they could
be applied on the use cases.
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1 Introduction

This deliverable reports the initial porting process of the selected use cases using
RePhrase methodologies and tools as far as they were available at about project
month 20. The use cases will only be described briefly as far as needed to explain
the parallelization applied on the use cases. A detailed description of the use cases
has already been given in D6.3 (Report on Selected Use Cases).

In the following chapters every use case partner reports about what RePhrase
tools and technologies, mainly developed in WP2 and WP3, have been used to port
the initial sequential implementation to a parallel implementation. Furthermore an
initial evaluation of the parallel implementations compared to the sequential im-
plementation concerning performance has been performed. This initial evaluation
focuses on functionality and performance improvements gained throw paralleliza-
tion. A detailed evaluation based on the metrics defined in D6.2 will be reported in
D6.5.

Currently available are most of the initial patterns defined in D2.1 and imple-
mented in D2.4 in an initial implementation. High-level patterns, such as the pool
pattern are currently only available when using the FastFlow interface. The pattern
interface does only allow for specifying the parallelism degree. Additional non-
functional parameters can not be defined so far. The refactoring, pattern discovery
and verification tool are in an early development phase and still lack off function-
ality and usability to fully support (semi)automatic parallelization and verification
of the use cases. Current application of the tools will be reported in this deliver-
able. Using a continuous evaluation and feedback process the tools are improved
to finally support the needs of the use cases.
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2 Railway Diagnosis System

2.1 Introduction

Evopro’s use case has been described in detail in deliverable D6.3. In a nutshell
the use case consists of two parts: the sensor algorithm which is executed on the
samples that are being produced by 24 analogue sensors and the post-processing
of that measurement data in order to produce the final load results. In D6.3, we
have already elaborated a list of potential parallelisation options, taking also into
account the physical requirement originating from the industrial deployment of the
eRDM system. Thus, in order to measure the effectiveness of code parallelisation
for later tool benchmarking purposes, that is, to create a clear baseline, we have
selected that part of the code base which seemed to be the most promising source
of demonstrable results. Also, we have evaluated a few parallelisation patterns,
three different embedded platforms and various simulated sensor measurements in
order to survey the gains through direct parallelisation. During this work the code
was ported manually; the following sections describe the consecutive steps and
corresponding results. We also created a parallel code version using the automatic
code transformations of the ParaFormance tool; these results are presented in 2.5.

2.2 Selected algorithm

The sensor algorithm calculates the convolution over the signal samples measured
by the strain gauge bridges. The calculation takes places through two parallel FIR
(finite impulse response) filters, each having 52 pre-calculated TAPS (filter coef-
ficients). The output of the calculation is the multiplied sum of the current and
the previous input signal samples and the filter coefficients. The relevant code in
sequential format is shown below in Listing 2.1.

Listing 2.1: Original sequential filtering code

const floatx bp_coeffs = RCBProc::bandpass_coefs;
const floatx hil_coeffs = RCBProc::hilbert_coefs;
unsigned int numOfCoeffs = RCBProc::filterLength;

//BENCHMARK START
double startTime = Utils::getTimeSec();
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//filtering
for (unsigned int rcbIdx = 0; rcbIdx < numberOfRCBs; rcbIdx++) {

float* inputSignal = RCBs|[rcbIdx].rcbProc.rawData.datal();
float* filteredSignal = RCBs[rcbIdx].rcbProc.filteredData.data();
unsigned int numOfSamples = RCBs[rcbIdx].rcbProc.rawbData.size();

for (unsigned int sampIdx = 0; sampIdx < numOfSamples; sampIdx++) {
filteredSignal [sampIdx] = 0.0f;
if (sampIdx >= numOfCoeffs - 1) {
float bp_temp = 0.0;
float hil_temp = 0.0;
for (unsigned int coeffIdx = 0; coefflIdx < numOfCoeffs;
(cont.)coeffIdx++) {
bp_temp += bp_coeffs[coeffIdx] % inputSignal[sampIldx -
(cont.)coeffIdx];
hil_temp += hil_coeffs[coeffIdx] * inputSignal[sampIldx -
(cont.)coeffIdx];
}
filteredSignal [sampIdx] = sqrt (bp_temp * bp_temp + hil temp =*
(cont.)hil_temp);

}

//BENCHMARK STOP
std::cout << "Total program run time:" << Utils::getTimeSec() - startTime
(cont.)<< "sec" << std::endl;

As can be seen in Listing 2.1, there is a three-fold nesting of loops to carry out
the convolution. The outer loop represents the sensors, the middle loop stands for
the actual samples and the inner loop is where the actual calculation of the convo-
lution with the pre-set filter coefficients takes place. From our current perspective
we labelled both the outer loop (due simulated data) and the inner loop (due gran-
ularity) as not relevant, so we focused on the refactoring of the middle loop along
the FastFlow patterns.

2.3 Chosen platforms

Evopro’s use case fits well state-of-the-art heterogeneous platforms, due to its in-
dustrial deployment, preferable multi-core ARM based many-core GPU SoCs. In
order not to prematurely constrain the spectrum of potential hardware solutions
we opted for parallelisation via FastFlow, however, we evaluated both multi-core
CPU and many-core GPU solutions individually. The following hardware plat-
forms have been tried:

e Xeon Server (48 CPU-cores, 2816 GPU-cores)

— 2x Intel Xeon E5-2695 v2 CPU (x86) (30M Cache, 2.40 GHz) (12
physical cores each, i. e. 48 cores in total by HyperThreading)

— 8x16 GB of DDR3 1600 MHz memory
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— AMD Radeon R9 290X graphics card (2816 cores, 4GB GDDRS5 /512
bit)

e Nvidia Jetson TK1 board (4 CPU-cores, 192 GPU-cores)

— NVIDIA 4-Plus-1 Quad-Core ARM Cortex-A15 CPU (2.32 GHz)
— NVIDIA Kepler GPU with 192 CUDA cores
— 2 GB of DDR3L 933MHz memory

e Gizmo 2 board (2 CPU-cores, 80 GPU-cores)

— AMD GX-210HA Dual-Core CPU (x86) (1M Cache, 1 GHz), i. e. 2
cores

— AMD Radeon HD 8210E with 80 cores
— 1GB of DDR3 1600 MHz memory

2.4 Parallelisation with manual refactoring

The focus of manual parallelisation is the convolution along the input data samples;
therefore three Fastflow parallelisation patterns seemed to be the best candidates for
the task: parallel_for (targeting the CPU), stencil, and farm combined with stencil
(targeting the GPU). The three different solutions are elaborated in the following
subsections.

2.4.1 Applying the parallel_for pattern

The kernel can be trivially embedded into the FastFlow Task structure: the original
convolution code can be copied verbatim, the context parameters must be provided
via the parallel_for construct. Finally, the Task structure gets these parameters via
its constructor (see Listing 2.2).

The invocation of the kernel is also straight-forward: at the place of the middle
for loop Listing 2.1, this time a Task is created, then the stages are set-up and finally
a FastFlow pipe is constructed. Then, by calling run_and_wait_end() on the pipe
the kernel is invoked; the rest of the code remains untouched (see Listing 2.3).

Listing 2.2: Filtering kernel code using parallel_for pattern

struct Task{

Task (floatx inputSignal, const float* bp_coeffs, const floatx
(cont.)hil_coeffs, floatx filteredSignal, unsigned int numOfSamples)

(cont.) :

inputSignal { inputSignal }, bp_coeffs { bp_coeffs }, hil_coeffs {
(cont.)hil_coeffs }, filteredSignal { filteredSignal }, numOfSamples
(cont.) { numOfSamples } {}

float* inputSignal;
const floatx bp_coeffs;
const floatx hil_coeffs;
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float+ filteredSignal;
unsigned int numOfSamples;
bi

struct StageInit : ff_node_t<Task> {

StageInit (Task& taskInit) : task(taskInit) {}
Task =*svc(Task *in) {

ff_send_out (&task);

return EOS;

private:
Taské& task;
Vi

struct Stage: ff_Map<Task> ({

Stage (unsigned int& numOfCoeffs, unsigned int& numOfSamples)
numOfCoeffs { numOfCoeffs }, numOfSamples { numOfSamples }/x, ff_ Map<
(cont.)Task> { 4 }*/ {}

Task* svc(Taskx in) {
float* inputSignal = in->inputSignal;
const floatx bp_coeffs = in->bp_coeffs;
const floatx hil_coeffs = in->hil_coeffs;
float* filteredSignal = in->filteredSignal;
ff_Map<Task>::parallel_for (0, numOfSamples, [bp_coeffs, &
(cont.)filteredSignal, hil_coeffs, inputSignal, this] (unsigned
(cont.)int sampIdx) {
filteredSignal [sampIdx] = 0.0f;
if (sampIdx >= numOfCoeffs - 1) {
float bp_temp = 0.0;
float hil_temp = 0.0;
for (unsigned int coeffIdx = 0;coeffIdx < numOfCoeffs;
(cont.)coeffIdx++) {
bp_temp += bp_coeffs[coeffIdx] * inputSignal[sampIdx -

(cont.) coefflIdx];
hil _temp += hil_coeffs[coeffIdx] * inputSignal [sampIldx
(cont.) - coeffldx];
}
filteredSignal [sampIdx] = sqgrt (bp_temp » bp_temp +

(cont.)hil_temp » hil_temp);

1)
return GO_ON;

private:
unsigned int& numOfCoeffs;
unsigned inté& numOfSamples;
i

Listing 2.3: Filtering kernel call site code using parallel_for pattern

const floatx bp_coeffs = RCBProc::bandpass_coefs;
const float* hil_coeffs = RCBProc::hilbert_coefs;
unsigned int numOfCoeffs = RCBProc::filterLength;

//Benchmark START
double startTimel= Utils::getTimeSec();
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for (unsigned int rcbIdx = 0; rcbIdx < numberOfRCBs; rcbIdx++) {

float* inputSignal = RCBs[rcbIdx].rcbProc.rawData.data();
float+ filteredSignal = RCBs[rcbIdx].rcbProc.filteredData.datal();
unsigned int numOfSamples = RCBs[rcbIdx].rcbProc.rawData.size();

Task task { inputSignal, bp_coeffs, hil_coeffs, filteredSignal,
(cont.)numOfSamples };

StageInit stage_init (task);

Stage stage { numOfCoeffs, numOfSamples };

ff_Pipe<Task> pipe(stage_init, stage);

pipe.run_and_wait_end();

}

//BENCHMARK STOP

double endTime= Utils::getTimeSec () ;

std::cout <<"Program run time:" << endTime - startTimel << "sec" << std::
(cont.)endl << std::endl;

2.4.2 Applying the stand-alone stencil pattern

Stencil is the obvious parallelisation pattern for carrying out convolutions since it
allows the accumulation of the results via the map-reduce operation. We relied on
FastFlow’s stencil pattern over OpenCL when we defined the kernel.

The kernel definition shown in Listing 2.4 is again mirroring the inner for loop
of Listing 2.1, but this time it relies on a macro to facilitates the injection of the
context variables (e.g. indexes to input samples, coefficients) into the body of
the kernel. oclTask is the specialised FastFlow task structure that sets up the data
input/output relation to and from the kernel (see Listing 2.5).

Finally, the kernel is invoked by first initialising an oclTask instance with the
sample input data and then mixing it in with the rest of the parameters, including
the name of the kernel. When the final data structure is ready, a GPU unit is selected
and run_and_wait_end() is called on it (see Listing 2.6).

Listing 2.4: Filtering kernel code using stencil pattern

FF_OCL_STENCIL_ELEMFUNC_Z2ENV (mapfenv, float, size, k, M, float, bp_coeff,
(cont.)float, hil_coeff,
(void) size;
float bp_temp = 0.0;
float hil_temp = 0.0;

if (k >= 52){
for(int 1 = 0; i < 52; i++) {
bp_temp += bp_coeff[i] *» M[k-1];
}
for(int 1 = 0; i < 52; i++) {
hil _temp += hil_coeff[i] » M[k-i];
}

return sqgrt (bp_temp*bp_temp + hil_tempxhil_temp) ;
} else {
return 0.0;

}

10
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Listing 2.5: Task definition for filtering kernel call site code using stencil pattern

struct oclTask: public ff::baseOCLTask<oclTask, float> {

oclTask ()
M(nullptr), out(nullptr), env(nullptr), size(0), result(0.0) {
}

oclTask (float xinput, float % output, size_t size, env_t * env)
M(input), out (output), env(env), size(size), result(0.0) {

}

void setTask (oclTask =*t) {
assert (t);
setInPtr (t->M, t->size);
setOutPtr (t->out, t->size);
setEnvPtr (t->env->bp_coeffs, 52);
setEnvPtr (t—->env->hil_coeffs, 52);
setReduceVar (&t->result) ;

}

float = M;

float * out;

env_t *x env;

const size_t size;
float result;

Listing 2.6: Filtering kernel call site code using stencil pattern

void do_gpu_filtering(std::vector<float>& inpSignal, std::vector<float>&

}

(cont.)filteredSignal) {

env_t env;

oclTask task(inpSignal.data(), filteredSignal.data(), inpSignal.size()
(cont.), é&env);
ff_stencilReduceLoopOCL_1D<oclTask> srl (task, mapfenv, "", 1.0,

(cont.)nullptr, 1, 52);
srl.pickGPU() ;
srl.run_and_wait_end();

return;

2.4.3 Applying the stencil and map patterns combined

In the case of the FastFlow farm pattern, the kernel definition remains the same
stencil-based one as already shown in Listing 2.4. However, this time explicit
Emitter, Collector and Worker definitions are necessary. The Emitter prepares the
input samples for processing, the Worker invokes the kernel with the needed pa-
rameters as already shown in Listing 2.6. Nevertheless, there is a slight difference
here since there is no need to call run_and_wait_end() as the Collector has taken
over that role (see the map node definitions in Listing 2.7).

11
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Finally, the farm is constructed by connecting together the Emitter, the Collec-
tor and the Worker nodes of the FastFlow network. When the run_and_wait_end()
is invoked on the farm the convolution kicks off on the input samples (see Listing
2.8).

Listing 2.7: Nodes for the map-based filtering kernel

struct Emitter: ff::ff_node {
Emitter (std::vector<std::vector<float>> & inpSignals, std::vector<std
(cont.) ::vector<float>> & filteredSignals, env_t & env)
inpSignals (inpSignals), filteredSignals(filteredSignals), env (env)
(cont.) {
}

void * svc(void *) {

for (unsigned i = 0; 1 < inpSignals.size(); i++) {
oclTask * T = new oclTask (inpSignals[i].data(),
(cont.)filteredSignals[i].data(), inpSignals[i].size(), &env
(cont.));

ff_send_out (T);

return EOS;

std::vector<std::vector<float>> & inpSignals;
std::vector<std::vector<float>> & filteredSignals;
env_t & env;

bi

struct Collector: ff::ff node_t<oclTask> {

oclTask % svc(oclTask * t) {
return GO_ON;

}i

struct Worker: ff::ff_ stencilReduceLoopOCL_1D<oclTask> {
Worker (std::string mapf, const size_t nacc)

ff_stencilReduceLoopOCL_1D<oclTask> (mapf, "", 1.0, nullptr, nacc,
(cont.)52) {
pickGPU () ;

Listing 2.8: Call site code for the map-based filtering kernel

void do_gpu_filtering_farm(std::vector<std::vector<float>> & inputSignals,
(cont.) std::vector<std::vector<float>> & filteredSignals,const int
(cont.)nWorkers) {

//const int nWorkers = 3;
const int nAccelerators = 1;

env_t env;
std::vector<std::unique_ptr<ff_node>> w;

for(int i = 0; i < nWorkers; i++) {
w.push_back (make_unique<Worker> (mapfenv, nAccelerators));
}
Emitter e (inputSignals, filteredSignals, env);
Collector c;

12
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ff_Farm<> farm(std::move(w), e, c);
farm.run_and_wait_end();

}

2.4.4 Measurement results

We have carried out some performance measurements on the different parallelisa-
tion patterns in order to measure their speed-up gains. Also, we have generated var-
ious input sample data to model the different train length and carriage distribution.
Although the measurements are only precursory of a more detailed metrics driven
analysis at a later stage, the preliminary results are rather promising indeed. The
measurements on Figure 2.1 show the execution times on the Xeon server under
various train length. Parallelisation is very efficient, it shows almost constant exe-
cution times independently of the length of the train. This is in stark contrast with
the sequential code where single CPU limitation results in polynomial increase of
execution time.

Similar results were obtained for the other two platforms, but the CPU and GPU
limitations of the embedded computing boards distorted the constant execution
times whenever the hardware limitations kicked in. The respective measurements
are shown on Figure 2.2 and 2.3.
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Figure 2.1: Results on Xeon server

2.5 Parallelisation with automatic refactoring

We created another version of the use case code, relying on the automatic trans-
formations provided by the ParaFormance tool. Again we focused on the filtering
code just like in the previous sections. In this case, however, we applied a farm
pattern targeting the CPU, and parallelized the outermost loop shown in Listing

13
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Figure 2.3: Results on Gizmo board

2.1. During code transformation the following automatic steps were carried out
(supported by the ParaFormance tool):

First the body of the for loop to be implemented as a farm pattern was ex-
tracted to a function, so that the loop body contains only a single function
call.

Then the function argument list was refactored so that the function operates
only on a single argument (implemented as a tuple object).

In the next step a Component object instantiation was inserted automatically
in the code, based on the for loop.

Then the FastFlow farm declaration was inserted, according to the created
Component object and the for loop.

Finally, the FastFlow farm implementation code was added.

14
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Result of the first two steps can bee seen in Listing 2.9, and the code implementing
the farm (result of the latter three steps) is shown in Listing 2.10.

Listing 2.9: Transformed filtering function

void filtering_fun (unsigned int rcbIdx, unsigned int numOfCoeffs, const
(cont.) float* bp_coeffs, const floatx hil_coeffs,std::vector<tRCB>& RCBs
(cont.)) {

float* inputSignal = RCBs[rcbIdx].rcbProc.rawData.data();
float filteredSignal = RCBs[rcbIdx].rcbProc.filteredData.data();
unsigned int numOfSamples = RCBs[rcbIdx].rcbProc.rawData.size();
for (unsigned int sampIdx = 0; sampIdx < numOfSamples; sampIdx++) {
filteredSignal [sampIdx] = 0.0f;
if (sampIdx >= numOfCoeffs - 1) {
float bp_temp = 0.0;
float hil_temp = 0.0;
for (unsigned int coeffIdx = 0; coeffldx < numOfCoeffs;
coeffIdx++) {
bp_temp += bp_coeffs[coeffIdx] * inputSignal[sampIldx -
(cont.)coeffIdx];
hil_temp += hil_coeffs[coeffIdx] * inputSignal[sampIdx -
(cont.)coeffIdx];
}
filteredSignal [sampIdx] = sqrt (
bp_temp * bp_temp + hil_temp x hil_temp);

void filtering_fun(const std::tuple<unsigned int, unsigned int, const
(cont.)float x, const float %, vector<tRCB, allocator<tRCB>>&> &args) {
return filtering_fun(std::get<0>(args), std::get<l>(args), std::get
(cont.)<2>(args), std::get<3>(args), std::get<4>(args));

Listing 2.10: Generated taskfarm

const floatx bp_coeffs = RCBProc::bandpass_coefs;
const floatx hil_coeffs = RCBProc::hilbert_coefs;
unsigned int numOfCoeffs = RCBProc::filterLength;

//BENCHMARK START

double startTime = Utils::getTimeSec();

Component<std::tuple<unsigned inté&,unsigned inté&,const floatx&,const float
(cont.)*&,std::vector< tRCB,std::allocator< tRCB> > &> > component (
(cont.)filtering_fun);

ff_farm<> farm = true;

std::vector<ff_nodex> workers;

for (int 1 = 0; i < 8; i++)
workers.push_back (&component) ;

farm.add_workers (workers) ;

farm.run_then_freeze();

//filtering

for (unsigned int rcbIdx = 0; rcbIdx < numberOfRCBs; rcbIdx++)
farm.offload(std::forward_as_tuple (rcbIdx, numOfCoeffs, bp_coeffs,

(cont.)hil_coeffs, RCBs));
farm.offload((void=*) (FF_EOS));
farm.wait_freezing();

15
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//BENCHMARK STOP
std::cout << "Total program run time:" << Utils::getTimeSec() - startTime
(cont.)<< "sec" << std::endl;

This code needs some further refinements before compilation, which must be
currently made manually. The final code for the filtering function and the definition
of the Component class can be seen in Listing 2.11. The altered code for the
taskfarm using 16 workers is shown in Listing 2.12.

Listing 2.11: Altered filtering function along with Component class definition

void filtering_fun_inner (unsigned int rcbIdx, unsigned int numOfCoeffs,
(cont.)const floatx bp_coeffs, const floatx hil_coeffs, tRCB& RCBs) {

float* inputSignal = RCBs.rcbProc.rawData.data();
float+ filteredSignal = RCBs.rcbProc.filteredData.data();

unsigned int numOfSamples = RCBs.rcbProc.rawData.size();
for (unsigned int sampIdx = 0; sampIdx < numOfSamples; sampIdx++) {
filteredSignal [sampIdx] = 0.0f;

if (sampIdx >= numOfCoeffs - 1) {
float bp_temp = 0.0;
float hil_temp = 0.0;
for (unsigned int coefflIdx = 0; coefflIdx < numOfCoeffs;
coeffIdx++) {
bp_temp += bp_coeffs[coeffIdx] % inputSignal[sampldx -
(cont.)coefflIdx];
hil_temp += hil_coeffs[coeffIdx] * inputSignal [sampIldx -
(cont.)coefflIdx];
}
filteredSignal [sampIdx] = sqrt (
bp_temp * bp_temp + hil_temp % hil_temp);

}
}

std: :tuple<unsigned int, unsigned int, const float x, const float =*, tRCB
(cont.)&>x filtering_ fun(std::tuple<unsigned int, unsigned int, const
(cont.) float *, const float =, tRCB&> xargs) {
filtering_fun_inner (std::get<0>(xargs), std::get<l>(xargs), std::get
(cont.)<2>(*xargs), std::get<3>(xargs), std::get<4>(xargs));
return args;

}

template <class T>
class Component: public ff_node {

public:

Component (Tx (xworker) (Tx)): worker (worker), final (false) {}
Component (Tx (xworker) (Tx), Tx results[]):

idx (0), results(results), worker (worker), final (true) {}

void* svc(voidx task) {

if (final == true) {
Tx taskin = (T*) task;
results[idx++] = (*worker) (taskin);
return GO_ON;

} else(
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T+ taskin = (T*) task;
T+ taskout = (*worker) (taskin);
return ((void «)taskout);

}

T+ callWorker (T x) {
T+ res = worker (x);
delete x;
return res;

protected:

T+ (*worker) (T*); // the worker function
bool final;

int 1idx;

Txx results;

bi

Listing 2.12: Altered taskfarm code

const floatx bp_coeffs = RCBProc::bandpass_coefs;
const float* hil_coeffs = RCBProc::hilbert_coefs;
unsigned int numOfCoeffs = RCBProc::filterLength;
int numWorkers = 16;

//BENCHMARK START
double startTime = Utils::getTimeSec();

ff_farm<> farm(true);
std::vector<ff_nodex> workers;
for (int i = 0; 1 < numWorkers; 1i++)
workers.push_back (new Component<std::tuple<unsigned int,unsigned int,
(cont.)const float*,const floatw,tRCB&> > (filtering_fun));
farm.add_workers (workers) ;
farm.run_then_freeze();
//filtering
vector<std::tuple<unsigned int,unsigned int,const floatx,const floatx*,tRCB
(cont.)&> > inputVec;
for (unsigned int rcbIdx = 0; rcbIdx < numberOfRCBs; rcbIdx++) {
inputVec.push_back (std::tuple<unsigned int,unsigned int,const floatx,
(cont.)const floatx,tRCB&> (rcbIdx, numOfCoeffs, bp_coeffs,
(cont.)hil_coeffs, RCBs[rcbIdx]));
farm.offload((void %) &inputVec.back());
}
farm.offload((voidx) (FF_EOS));
farm.wait_freezing();
for (int 1 = 0; i < numWorkers; i++)
delete workers([i];

//BENCHMARK STOP
std::cout << "Total program run time:" << Utils::getTimeSec() - startTime
(cont.)<< "sec" << std::endl;

2.5.1 Measurement results

Performance measurement for the described taskfarm-based implementation ex-
ploiting the ParaFormance automatic transformations were performed on our Xeon-
based server. Figure 2.4 shows the results we got for the CPU-based implementa-
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tions running on this platform; the sequential code, the parallel_for-based version
(these are also shown on Figure 2.1) and the taskfarm-based versions. The last
one gives the best performance by far, being more than one order of magnitude
faster compared to the sequential version for each input size (an average of x10.6
thanks to the 16 parallel workers applied). In contrast, the parallel_for-based so-
lution only achieves a moderate speedup (x2.37 averagely for the different input
size values), which indicates that selecting the middle for loop for parallelisation
in the original code (see Listing 2.1) is suboptimal on the CPU (although it suits
the GPU architecture well, due to the large number of potential parallel workers
processing distinct samples of the input signal). On CPU, processing the different
sensors in parallel (leading to lower number of parallel workers, but less overhead)
is favourable.

=]
5 noe nora tnow n g i
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—a—CPU

Paraliel CPU
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CPU Paralkel (farm)

Convolution Execution Time [sec]

4 16 30 50 102
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Figure 2.4: Comparing CPU-based results acquired on Xeon server
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3 Medical Image Processing

3.1 Introduction

In recent years, diffusion magnetic resonance imaging (MRI) has played an impor-
tant role in the investigation of morphological features of brain tissues. When the
diffusion is constrained by the presence of obstacles, this technique yields infor-
mation about the confining geometry. It provides a new dimension of MRI contrast
based on water mobility, because of the different cellular environment experienced
by water molecules. The study of this phenomenon has made possible a deeper
knowledge of the microanatomy of the living brain and others complex tissues,
due to its noninvasive nature.

In this sense, the use of the MATLAB language has become over the years de
facto standard for designing and prototyping a wide range of applications in both
science and engineering areas. Because of its easy programming model, the sci-
entific and technical communities have chosen to use this high-level language for
developing application prototypes, which require the computation of linear algebra
problems. By contrast, many of these prototypes have moved to a production stage
without being properly adapted and optimized to handle large workloads. There-
fore, today it is possible to find numerous examples of MATLAB-implemented ap-
plications running on high-performance production platforms but not fully exploit-
ing the benefits of such parallel hardware.

From the set of methods and algorithms proposed to date for analyzing this
type of medical imaging, we will focus on the collection of MATLAB routines,
namely HARDI-Tools http://neuroimagen.es/webs/hardi_tools/,
dedicated to the intravoxel reconstruction from High Angular Resolution Diffu-
sion Imaging (HARDI) data. Within the set of techniques included in HARDI-
Tools, in this deliverable, we have focused on the parallelization of the RUMBA-
SD method (the source code presented in this work is available at the project Web
site!), namely pHARDI. However, because of the modular design of the proposed
solution, including new methods in the future will not require considerable efforts.

See: https://bitbucket.org/fiblas/phardi
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3.2 pHARDI Architecture

As shown in Fig. 3.1, pHARDI has a layer-based design, which allows the use of
multiple linear algebra accelerators in a wide range of devices, such as multi-core
devices GPU (both CUDA and OpenCL) or even co-processors, like Intel Xeon
Phi. In the case the platform that does not incorporate any accelerator, our solution
can also run on multi-core processors using highly-tuned linear algebra libraries.
We use Armadillo on top of the linear algebra accelerators for providing a common
interface. Additionally, we take advantage of Armadilllo for reflecting most of the
MATLAB language (e.g. remap, reshape, etc.).

With the aim of supporting GPU devices, we have developed two different
versions: one that is totally based on the Armadillo library and a second leveraging
the ArrayFire library. To develop the second approach, only fragments of code
that are computationally more expensive, namely kernels, have been implemented
using ArrayFire routines. It is important to remark that both solutions use a column-
major logical layout of the matrices and volumes handled, in both CPU and GPU.
Therefore, no additional changes in the memory access pattern are required in the
code for running both versions.

pHARDI

C++ STL

Armadillo ArrayFire

OpenBLAS Intel MKL
OpenBLAS  Intel MKL OpenCL CUDA
NVBLAS |

Figure 3.1: Layered software architecture of pHARDIL.

We note that the only drawback of using Armadillo is the lack of parallelization
of element-wise operations (as shown in Subsection 3.4). In order to cope with
this, we have parallelized these operations using OpenMP. However this approach
limits the portability to accelerated solutions like NVBLAS. In contrast, ArrayFire
supports automatic element-wise operations, which facilitates the development and
increases performance.

Regarding data management, we have chosen the ITK library [7], which facil-
itates the management for reading and writing data in different formats related to
the medical imaging area, such as DICOM and Nifti. Another advantage of using
ITK is the support for automatic file compression. This fact, significantly reduces
the storage space required by the applications.

pHARDI supports two data access patterns for processing the input data. The
first pattern separately processes each slice from the input data volumes (z X y X 2),
resulting in a total of z slices, each one of x x y X t voxels, being ¢ the number of
orientations. The second layout processes all pixels from the volumes in a single
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matrix. This matrix has a dimension of n X m elements, where n corresponds with
the amount of evaluated orientations (e.g. 100) and m with the amount of voxels
on each volume (e.g 125 megapixels).

Listing 3.1: pHARDI computation kernel: intravox fiber reconstructor in RUMBA-
SD.

for (size_t 1 = 0; 1 < Niter; ++1) {
Ratio = mBessel_ratio<T> (n_order,Reblurred_3);

#pragma omp parallel for simd
for (size_t k = 0; k < SR.n_cols; ++k )
for (size_t j = 0; J < SR.n_rows; ++7j)
SR(j,k) = Signal(j,k) % Ratio(j,k);
KTSR = KernelT x SR;
KTRB = KernelT x Reblurred;

#pragma omp parallel for simd
for (size_t k = 0; k < fODF.n_cols; ++k)
for (size_t 37 = 0; j < fODF.n_rows; ++73)
fODF (j, k) = fODF(j,k) * KTSR(j,k) / (KTRB(j,k) + std::
(cont.)numeric_limits<double>::epsilon());

Reblurred = Kernel » fODF;

#pragma omp parallel for simd
for (size_t k = 0; k < Signal.n_cols; ++k)
for (size_t j = 0; j < Signal.n_rows; ++7)
SUM(j,k) = (pow(Signal(j,k),2) + pow(Reblurred(j,k),2))/2 - (
(cont.)sigma2(j,k) * (Signal(j,k) * Reblurred(j,k)) / sigma2
(cont.) (j,k)) » Ratio(3j, k);

sigma2_i = (1.0/N) % sum( SUM , 0) / n_order;

#pragma omp parallel for
for (size_t k = 0; k < sigma2_i.n_elem; ++k)
sigma2_i (k) = std::min<T>(std::pow<T>(1.0/10.0,2),std: :max<T>(
(cont.)sigma2_1i (k), std::pow<T>(1.0/50.0,2)));

sigma2 = repmat (sigma2_i, N, 1);

}

Listing 3.1 shows the most time consuming part of RUMBA-SD. This code is
executed a determined number of iterations (N+iter). Each iteration is composed
by three matrix multiplications and multiple element-wise multiplications. As far
as we know, Armadillo lacks of a parallel implementation of element-wise multi-
plication calls, so these calls have been parallelized by OpenMP, while preserving
the data access primitives of Armadillo. As explained before, Armadillo stores
matrices in a row-major way. Loops are also parallelized by applying the simd
OpenMP pragma, with the aims of vectorizing the content of each loop.

3.3 Initial Porting Setup based on GrPPI

The aims of this section is to detail the manual steps carried out for paralellizing
an initial implementation of pHARDI using GrPPI. In this case, we have identified
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that the most suitable parallel patterns are Pipelineand Farm. A reduced code
fragment of pHARDI paralellized by GrPPI can be seen in Listing 3.2. Initially,
we manually identify the parallel patterns that fit with the existing code. First,
we identify that the loop in charge of processing each slice of the input data can be
adapted to a Pipelineparallel pattern (Line 4), given that each slice can be acquired
(Line 5), processed (Line 23), and stored (Line 58) independently. So, the three
stages of the Pipelinepattern follow this processing order. Then, the processing
stage (second stage) can be transformed in a Farmparallel pattern. This middle
stage can process in parallel the calculation of the ODF resulting matrix. The input
data of this stage corresponds with a modified matrix obtained in the previous stage
and passed by parameter in the lambda function. In all the stages, we found that
the use of tuples is a good alternative to forward the corresponding ouputs to the
next stage.

One of the mains advantages of GrPPI in conjunction with pHARDI use case
is the possibility of overlapping both computation and I/O-related stages, reducing
the total execution time as demonstrated in the evaluation section of this chapter.

Listing 3.2: pHARDI paralellized by using GrPPI.

parallel_execution_omp p{};
parallel_execution_omp f{};
Pipeline( p,

// Pipeline stage 0

//1&1 () A
[=, &Vmask, &Vdiff, &nslice] () {
LOG_INFO << "Processing Stage 0: Slice " << nslice ;
if (nslice == zdiff)
return optional<paramStage0>();
else {
Cube<T> Idiff (xdiff, ydiff, Ngrad);
for (int graddir = 0; graddir < Ngrad; ++graddir) {
Idiff.slice(graddir) = Vdiff[graddir].slice(nslice) %
(cont.)Vmask.slice(nslice); // product-wise
(cont.)multiplication
}
paramStage0 tupleIdiff = std::make_tuple(nslice, Vmask.slice(
(cont.)nslice), Idiff);
nslice++;
return optional<paramStageO> (tupleIdiff);
}
by
Farm (£,

[=, &Kernel, &ind_S0] (paramStage0 tupleIdiff) {
int slice = std::get<0> (tupleldiff);
LOG_INFO << "Processing Stage 1: Slice " << std::get<0>(
(cont.)tupleIdiff);
Mat<T> Vmasks = std::get<l>(tupleIdiff);
Cube<T> Idiff = std::get<2>(tupleldiff);

std::cout << Vmasks.size () << std::endl;
size_t totalNvoxels = Vmasks.n_elem;

Cube<T> globODFslice (xdiff,ydiff,Nd,fill::zeros);
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Row<T> ODF_iso(ydiff,fill::zeros);

Cube<T> SO_est (xdiff, ydiff, ind_S0.n_elem);
Mat<T> SO_est_M (xdiff, ydiff);

for (int 1 = 0; i < ind_SO0.n_elem; ++1i) {
S0_est.slice (i) = Idiff.slice(ind_SO0(i));

Mat<T>allIndexesODF = repmat (inda.t (),ODF.n_rows,1);
Mat<T> ODFindexes = allIndexesODF + totalNvoxels x repmat (

(cont.)linspace<Mat<T>> (0, ODF.n_rows - 1, ODF.n_rows )
(cont.),1,inda.n_elem);
for (int j = 0; j < ODF.n_cols; ++3) {
for (int i = 0; i < ODF.n_rows; ++i) {
globODFslice.at (ODFindexes (i, j)) = ODF (i ,3);

}
}

return std::make_tuple(slice, globODFslice, slicevf_CSF,
(cont.)slicevf_GM, slicevf_WM, slicevf_GFA);
)y

[&] ( paramStagel tupleRes ) {

int slice = std::get<0>(tupleRes);
Cube<T> globODFslice = std::get<l>(tupleRes);
Mat<T> slicevf_CSF = std::get<2>(tupleRes);
Mat<T> slicevf_GM = std::get<3>(tupleRes);
Mat<T> slicevf_ WM = std::get<4> (tupleRes);
Mat<T> slicevf_GFA = std::get<5>(tupleRes);

LOG_INFO << "Processing Stage 2: Slice " << slice ;

for (int i = 0; i < xdiff; ++1i) {
Index4DType coord;
coord[0] = i; coord[2] = slice;
for (int j = 0; j < ydiff; ++3) {
coord[1l] = 7J;
for (int k = 0; k < Nd; ++k) {
coord[3] = k;
imageODF->SetPixel (coord, globODFslice (i, j, k));

}

}

WriteImage<Image4DType, Image3DType, NiftiType> (ODFfilename,
(cont.)imageODF, slice);

3.4 Experimental Evaluation

In this section, we detail the experimental evaluation carried out that demonstrates
the benefits of the migrated application. The experiments have been conducted us-
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ing different multi-core processors and accelerators and several highly-tuned linear
algebra libraries on the bottom of Armadillo and ArrayFire. In the following we
describe in detail the target platform, software and configurations used during the
experimentation phase.

e Platform. The evaluation has been carried out on a machine consisting of
two multi-core Intel Xeon E5-2630 v3 processor with a total of 8 physical
cores running at 2.40 GHz, hyperthreading activated, equipped with 128 GB
of RAM, and executing Linux Ubuntu 14.04 x64 OS. This machine is also
equipped with a NVidia Tesla K40 and a GTX 680 under CUDA version 7.5.
The compilers used are GCC 5.1 and Intel 15.1. After that, the source code
has been compiled using both ~03 and ~-DNDEBUG flags.

e pHARDI configuration. The experimental results using the pHARDI frame-
work have been obtained using different linear algebra libraries, concretely
OpenBLAS, Atlas, NVBLAS, Intel MKL, and ArrayFire. In the case of At-
las, we compiled the application using the auto-tuned optimal parameters. It
is important to remark that all the experiments have been performed using
single and double precision floating point numbers. To guarantee integrity
of the results, we performed five consecutive executions and computed the
average execution times.

o Input data. For each of the linear algebra libraries tested within pHARDI, we
run the application using a real diffusion MRI dataset acquired from healthy
subject. Specifically, whole-brain HARDI data were acquired in a 3T Philips
Achieva scanner (Sant Pau Hospital, Barcelona) with a 8-channel head coil
along 100 different gradient directions on the sphere in q-space with constant
b = 2000 s/mm?. Additionally, 1> = 0 volume was acquired with in-plane
resolution of 2.0 x 2.0 mm? and slice thickness of 2mm. The acquisition
was carried out without undersampling in the k-space (i.e., R = 1). The
final dimension of this dataset is 128 x 128 x 60 x 101 voxels.

For the experimental evaluation, we have used two different data layouts for
processing the input data. In both cases, the reconstruction process is obtained
after 300 iterations of the RUMBA-SD algorithm.

3.4.1 Accelerators Evaluation

Fig. 3.2 (left) plots the execution time (left) and the respective speedups achieved,
including I/0 time (right). As can be seen, the versions that attained the highest
performance are the ones using the ArrayFire implementation. Obviously, the main
advantage of this version is due to the high computational capacity of the GPUs.
In this case, both BLAS3 and element-wise operations are offloaded to the GPU.
However, we observe that there are not remarkable differences between the two
GPU models analyzed. In the future, we intend to carry out a more detailed analysis

24



100 volumes of 128x128x60 voxels

Matlab Intel MKL OpenBLAS NVBLAS + NVBLAS + Arrayfire Arrayfire
OpenBLAS  MKL  (Tesla K40) (GTX 680)
(Tesla K40) (Tesla K40)

400

N oW W
u o wu
o O o

Total execution time (seconds)
= - N
1% o 1% o
o o o o o

M Slices-Float W Slices - Double Volume - Float Volume - Double

100 volumes of 128x128x60 voxels

8
7 <A
6
a5
=]
T a
CU
Q
v 3
2 \
1
0
Intel MKL ~ OpenBLAS  NVBLAS+  NVBLAS + Arrayfire Arrayfire
OpenBLAS MKL (TeslaK40) (GTX680)
(TeslaK40) (Tesla K40)
—a—Slices - Float =—#=Slices - Double Volume - Float Volume - Double

Figure 3.2: Overall execution time of pHARDI on different linear algebra acceler-
ators.

on this aspect. An additional observation is that the version linked against the In-
tel MKL library delivers the best performance for the CPU-based cases. Although
the MATLAB version of the applications uses underneath the same Intel MKL li-
brary for executing linear algebra kernels, our C++-ported implementation makes
it more efficient thanks to the use of parallelized element-wise multiplication and
optimized I/O operations via the ITK library. Finally, we do not contemplate Atlas
in Fig. 3.2, mainly due to the bad performance obtained, even for tuned versions.
It is also important to highlight that NVBLAS version is only able to offload
to the GPU BLAS3-related operations. This shortcoming substantially limits the
room for improvement in this case. Additionally, for each offloaded operation
a memory transfer from host to device arises, limiting, even more, the perfor-
mance of this approach. For example, this process is not required in ArrayFire, and
thanks to its API, the developer can specify which variables should be maintained
in the device memory. This feature is especially important for iterative applica-
tions, needing to compute more than once a given operation over the same data.
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Given the experimental results, we observe that the approach based on NVBLAS
(in case of the volume pattern) is a competitive solution, where it is not needed to
modify the initial Armadillo code.

Finally, Fig. 3.2 (right) reports the speedup reached by each of the linear alge-
bra solutions, comparing with MATLAB as reference. We observe that reduce the
overall execution time by 8. In case of Intel MKL, the major improvement comes
from the use of OpenMP, reaching an improvement of 4 X over MATLAB.

3.4.2 NVBLAS Evaluation

Fig. 3.3 plots a comparative analysis of NVBLAS, where the tile dimension varies
from 256 to 16384 elements (threads). The tile dimension corresponds with the
parameter cublasXtSetBlockDim of cuBLAS. It is important to note that not
all the BLAS Level-3 calls are offlloaded to the GPU. That decision is based on
a simple heuristic that estimates if the BLAS call will execute for long enough to
amortize the PCI transfers of the input and output data to the GPU [§].

NVBLAS tile comparison - Single precision NVBLAS tile comparison - Double precision
(Tesla K40) (Tesla K40)
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Figure 3.3: Evaluation of different tile dimensions in NVBLAS, for single and
double precision.

Fig. 3.4 compares two GPUs (GTX 680 and Tesla K40) in terms of the tile
dimension. We observe that there is not a significant different in terms of perfor-
mance. However, the selection of an adequate tile dimension is a key factor.

3.4.3 pHARDI over GrPPI

In this subsection, we present the evaluation results of pHARDI in combination
with GrPPI. The evaluation was carried out by executing the transformed source
code presented in Listing 3.2. In all the evaluated cases, we have executed pHARDI
with the number of cores available in the previously presented platforms. In other
words, GrPPI has been configured to use as thread number, the number of the
computer cores. Finally, the available threads for matrix multiplications have been
reduce and limited to one to do not interfere with the GrPPI computational threads.
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Figure 3.4: Evaluation of different GPUs, varing the tile dimension at double pre-
cision and the volume access pattern.

Table 3.1: pHARDI paralellized by using GrPPI over OpenMP and standard C++1
threads.

Implementation Time (in seconds) Speedup

Matlab ~1,200.00 -

pHARDI baseline (Intel MKL) 120.20 ~10x faster than MATLAB
pHARDI GrPPI-OMP 82.82 45% faster than baseline
pHARDI GrPPI-THR 66.76 ~2x faster than baseline

The evaluation shown in Table 3.1, we have compared the overall execution
time of pHARDI (included the I/O phases) over four different scenarios: MATLAB,
a pHARDI relying on Intel MKL, pHARDI over GrPPI and OpenMP as accelera-
tion support, and pHARDI under GrPPI using C++ threads. The table summarized
the execution time (in seconds) and a comparative speedup with MATLAB.

In Table 3.1, we observe that the faster solution is pHARDI on top of GrPPI
using C+11 threads. The results show that the version based on GrPPI is 2 x faster
than the baseline approach introduced in Section 3.2 and 40 x faster than the MAT-
LAB implementation. The obtained execution times are motivated by a better use
of the computational resources.

3.4.4 PPAT

In Listings 3.3 and 3.4, we show the lines of codes identified by PPAT. Regarding
Listing 3.3, which represents the source code related with the image initial pro-
cessing, most of the identified lines are currently parallelized by using OpenMP.
Additionally, Listing 3.4 demonstrates that the most expensive computational parts
of the kernel of pHARDI are also identified.

Listing 3.3: pHARDI analyzed by PPAT. Algothirm manager code region.
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MAP FOUND ON:

./fjblas-phardi-a699a3dadc57/include/
(cont.)multi_intravox_fiber_reconstruction.hpp:139

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:141

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:143

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:174

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:176

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:284

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:419

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:420

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:430

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:432

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:452

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:759

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:770

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:787

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:788

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:798

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:809

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:819

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:829

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:839

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:841

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:861

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:875

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:1176

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:1187

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:1204

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:1205

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:1216

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:1218

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:1230

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:1244

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:1246

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:1258

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:1260

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:1273

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:1275

MAP FOUND ON: ./include/multi_intravox_fiber_reconstruction.hpp:1277
Listing 3.4: pHARDI analyzed by PPAT. RUMBA SD kernel.

MAP FOUND ON: ./include/intravox_fiber_reconst_sphdeconv_rumba_sd.hpp:108

MAP FOUND ON: ./include/intravox_fiber_reconst_sphdeconv_rumba_sd.hpp:112

MAP FOUND ON: ./include/intravox_fiber_reconst_sphdeconv_rumba_sd.hpp:113

MAP FOUND ON: ./include/intravox_fiber_reconst_sphdeconv_rumba_sd.hpp:124

MAP FOUND ON: ./include/intravox_fiber_reconst_sphdeconv_rumba_sd.hpp:131

MAP FOUND ON: ./include/intravox_fiber_reconst_sphdeconv_rumba_sd.hpp:140

MAP FOUND ON: ./include/intravox_fiber_reconst_sphdeconv_rumba_sd.hpp:147

MAP FOUND ON: ./include/intravox_fiber_reconst_sphdeconv_rumba_sd.hpp:43

MAP FOUND ON: ./include/intravox_fiber_reconst_sphdeconv_rumba_sd.hpp:44

3.5 Discussion

This deliverable has presented a case study where an application, initially imple-
mented in the MATLAB language, has been ported to C++ language. The benefits
are numerous, particularly due to its robustness, flexibility, and portability. Con-
cretely, the medical use case ported is now compliant with a wide range of parallel
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hardware, such as multi-core processors, accelerators and co-processors, and mul-
tiple highly-tuned linear algebra libraries. We believe that this new application can
tremendously aid researches in the area o studying the diffusion MRI of the human
brain to get responses, as the experiments require now much less time to complete.
Although the porting task can be cumbersome, we observed that using modern C++
libraries, such as Armadillo or ArrayFire, for performing linear algebra operations,
greatly alleviates the burden of the developer carrying out the task.

In general, we observed that the execution time of the migrated application is
8x faster, on average, than the original MATLAB version. The performed experi-
ments demonstrate that the pair Armadillo and NVBLAS provide multiple advan-
tages: a similar source code, automatic parallelization on BLAS level 3, and a good
performance. As a remark, one of the main issues we observed for the ArrayFire
library is the limited support for developing applications using multiple GPUs.

The approach introduced in this work is extended to also implement other im-
portant intravoxel reconstruction methods, including model-free techniques like
g-ball imaging [12] and its extensions [I, 2, 6, 11], diffusion orientation trans-
forms [4, 9], diffusion spectrum imaging [3, 13], as well as approaches based on
parametric diffusion models and other spherical deconvolution algorithms [10]
(e.g., for more details see the evaluation study by [5]). A further evaluation of
these methods will be present in future deliverables.
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4 Stochastic Local Search

4.1 Introduction

In this particular use case we address an optimization problem currently encoun-
tered in the slitting of metal sheets used in the production of electrical transformers.
The use case has already been described in detail in D6.3. Therefore only a course
overview of the important aspects will be given here.

The problem corresponds to a 2 dimensional bin-packing problem with con-
straints, since the objective corresponds to appropriately placing a set of metal
stripes (bands) into a set of available metal coils, so that the overall metal waste
is minimized. The optimization is subject to several constraints concerning the
properties (e.g., weight and quality) of the produced bands, the admissibility of the
slitting sequence of the available coils, as well as overall properties of the resulting
assembly.

The large number of constraints (as well as their nonlinear nature) does not
allow for using standard optimization algorithms for addressing this particular
problem. In particular, the computation of feasible solutions (i.e., solutions that
satisfy all constraints) is not straightforward, making the optimization especially
hard. Thus, an optimization algorithm has been designed which is based on local
stochastic search which allows to incorporate problem specific search operators,
where a set of possible alterations in the allocation of bands is considered for lo-
cally searching for improvements in the cost function. This set of possible alter-
ations is formulated in the form of processing blocks (workers), and any initially
admissible allocation is going through a large sequence of such blocks.

Due to the large number of constraints, convergence to local optima is rather
common while the probability of escaping from such local optima is very small
(since it would require a large number of reverse alterations to be realized). Be-
cause of this, the probability of convergence to the global optimum may only in-
crease if a) a large number of initial admissible solutions is considered which are
processed independently, and b) reprocessing from earlier stages is allowed when
a processing path has already converged to a local optimum. Both (a) and (b) may
significantly increase the number of processing paths that are explored throughout
the optimization, thus increasing the probability for converging to the global op-
timum. However, a large number of initial admissible solutions and reprocessing
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from earlier stages significantly increases the processing time. In fact, in order to
maintain a reasonable overall processing time, reprocessing is only possible when
it starts from admissible solutions that are close enough to the currently best solu-
tion.

Parallelization of the processing steps of the optimization algorithm allows for
a) larger number of initial admissible solutions and b) reprocessing from stages fur-
ther away from the currently best solution, while maintaining the processing time
at the same levels as in the sequential version. Thus, through parallelization, we
may increase the number of processing paths followed throughout the optimization
(i.e., we may increase the probability for convergence to the global optimum) while
maintaining the processing time at the same level.

4.1.1 Evaluation Metric

Besides the traditional performance metrics to evaluate the efficiency of a paral-
lel implementation (e.g. execution time, speedup, utilization) our main algorithm
specific metric is the number of processed solutions per time unit. Measuring the
number of processed items is important for two reasons:

e The ratio of processed items per time unit and the number of used process-
ing units gives information about the speedup and scalability of the parallel
implementation.

e The higher the number of processed items in a single optimization run the
more processing paths have been followed throughout the optimization which
increases the probability of finding an optimal solution.

4.2 Parallel Pattern Implementations

Basis for the parallelization was a sequential implementation of the algorithm de-
scribed in D6.3. In this initial application port we focused on the iterative opti-
mization part to increase the number of processed items in a single optimization
run, since this improves the probability to find an optimal solution. Figure 4.1
depicts the iterative core part of the optimization algorithm. Simply put, slitting
plans residing in a pool are processed by a chain of optimization steps, inspected
by the filter component and put back into the pool. This process is continued until
a certain termination criterion is met.

In the initial sequential implementation the slitting plans are optimized one af-
ter the other. Only after one slitting plan has been finished processing, the next one
can be picked from the pool. But since each slitting plan is completely independent
from the others and carries all information needed for optimization the optimiza-
tion steps can be applied on all slitting plans in the pool in parallel. The filter is
more complicated to parallelize since it has several global states that are updated
when processing a slitting plan.

31



Opimization Steps

—>>
[ Step 1 ]—)[ Step 2 ]—)[ Step 3 ]—)[ Step n ]

Intermediate
Solution
Pool

Figure 4.1: Diagram of iterative optimization.

The next two chapters describe two different parallel implementations. The
first one uses high-level parallel patterns, while the second one uses core streaming
patterns. In this initial port of the application the implementation has been done
manually without any tool support since at the time of writing this deliverable
the tools where not major enough to cope with the complex code structures and
refactorings needed to introduce parallelism (semi-)automatically. We will deal
with the tool application on this use case separately in chapter 4.3.

4.2.1 Synchronous Implementation

In the first implementation we applied the pool pattern, as introduced in D2.5 chap-
ter 2.1, on this use case. Though initially designed for genetic algorithms, the se-
mantics of this pattern perfectly fits to this kind of optimization algorithms. To
apply this pattern several refactorings of the existing code had to be performed in
order to map the different code parts to the four functions (selection, evolution,
filter, terminate) of the pool pattern. Initially picking an item from the pool, op-
timizing and filtering it has been done in one main loop. This had to be split in
to several functions manually. Tool support is only feasible in a very limited scale
since restructuring the code requires knowledge of semantics of the algorithm. Fig-
ure 4.2 depicts the structure of the pool pattern applied to the use case.

Currently only an implementation of this patterns based on FastFlow is avail-
able. As soon as an implementation based on GrPPI is available, we will switch
to this implementation in order to be able evaluate the performance using different
backends.
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Figure 4.2: Diagram of applied Pool-Evolution Pattern.

The effort of applying this pattern is limited to mapping the existing code to
the functions for selection, evolution, filter and termination.

e The selection function simply returns all items of the pool, since in every
iteration all candidate solutions are processed.

e The evolution function can be directly mapped to the optimize function.

o To filter the solution after the evolution phase the already existing filter func-
tion can be used.

e The terminate function simply has to check a boolean flag that has been set
during the filter process.

The following code snippet illustrates the instantiation and use of the pool evo-
lution pattern:

poolEvolution<shared_ptr< Workpiece<T> >, Env_t<T>>
pool (_numWorker, _pool,
selection, evolution, filter, termination,
Env_t<T> (this));

pool.run_and_wait_end();

The template class of the pool pattern needs two template arguments for in-
stantiation:

e Type of the items in the pool
e Type of an optional structure that holds additional data needed during pool

execution
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Constructor parameters:

e _numWorker :the number of workers used for execution the pool pattern;
equal to the parallelization degree

e _pool :iterable structure that holds the pool items

e selection, evolution, filter, termination:pointers to func-
tions

e Env_t<T> (this) :needed environment data needed during optimization
process

The command pool.run_and_wait_end() synchronously executes the pool pat-
tern and returns once the execution terminates.

In the implementation of the pool evolution pattern only the evolution of the pool
items is executed in parallel. This means for our particular case that the optimize
function is applied on all selected candidate solutions simultaneously. Further loop
parallelization within the optimize function is possible by simply nesting e.g. a
par-for pattern. But this is only feasible on systems where the number of cores
is higher than the number of solutions processed in parallel. Otherwise switching
between the threads would hurt performance more than the gain from additional
parallelization. Additional speedup can be achieved by parallelizing the filter func-
tion, for example by nesting another pattern like par-for or pipe. But as stated
earlier, global states in the filter need to be protected from concurrent updates,
which reduces the possible performance gain.

The initial implementation of the pool pattern only provides a synchronous
implementation, meaning that before the filter is called all selected items must
have finished the evolution function.

4.2.1.1 Preliminary Evaluation

In this evaluation we optimized the slitting plan of a transformer core with a weight
of about 200 tons.

e Platform. The evaluation has been carried out on a 20 core Intel Xeon (two
NUMA nodes 10 cores each) with 128 Gb RAM running Ubuntu 12.02.

e Optimization Setup. The optimization has been done using the sequential
implementation as the base line. Afterwards multiple runs with increasing
numbers of threads have been executed. For each number of threads the
average of ten runs has been calculated. For the pool size two different values
(16, 32) have been chosen. The execution time for one optimization run was
always two minutes.
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e Metrics. For each run two key metrics for our use case have been mea-
sured. The number of processed items has been measured as the metric to
rate the performance of the application. The weight of the selected metal
coils needed to build the transformer core indicates the quality of the opti-
mization process.

Figure 4.3 and figure 4.3 depict the results of the evaluation. Roughly spoken,
with increasing number of threads the number of items processed in a single run
increases and the weight of coils needed to build to transformer core decreases.
A more detailed analysis shows that the speedup is not constant for the different
runs. For a small number of threads (up to 4) an almost linear speedup could
be achieved. The speedup flattens if more threads are used. The trend of the
speedup is illustrated in figure 4.5 and figure 4.5. Furthermore it can be seen that
the performance between to consecutive runs is not always equal. There are two
main reasons for that.

e Sequential Parts. The filter in this implementation is still sequential and
poses the main bottleneck now. The more items are processed in parallel in
the evolution part, the longer the queue in front of the filter gets. Therefor
the speedup decreases with the number of threads.

e Farm Queue Length. The reason for different performance increases be-
tween two consecutive runs is the length of the item queues of the farm
workers in the evolution function. The available items are assigned equally
to the number of workers, e.g. using eight workers for 32 items leads to
equal queues of length four for each worker. In this case all workers will
finish at about the same time. Increasing to ten threads leads to eight work-
ers with queues of length three and two workers with queues of length four.
The eight workers with three items assigned will finish before the two with
four items, but have to wait until the others are finished. This is illustrated
in figure 4.7 and figure 4.8. It shows the correlation between the number of
processed items in a single execution and the reverse of the longest queue
length. A parallelisation approach based on item streaming as described in
the next chapter should help to avoid this.

4.2.2 Asynchronous Implementation

The advantage of high-level patterns such as the pool evolution pattern is its ab-
stractness, hiding all aspects of parallelization or pattern composition from the
developer. But encapsulation of these aspects reduces the possibilities of the de-
veloper to control or tune the parallelization.

The current implementation of the pool pattern itself has one issue that hurts
performance of our application. For every iteration a fixed number of items is se-
lected from the pool (or in our case all items). Evolution of all these items has to
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Figure 4.9: Diagram of Streaming Parallel Pattern structure.

be finished before the filter function is invoked. This introduces a synchronisation
point between evolution and filter (depicted in Figure 4.2 with two parallel bars
between Evolution and Filter) insuring that all items have been processed exactly
for the same number of iterations. In our optimization algorithm such a synchro-
nization is not necessary. It does not matter whether an items has been processed
more often than others and filtering a particular item only relies on a global state
that might be updated during the filter process but not on the current state of the
other items. Due to the stochastic nature of this algorithm the processing time for
each item in the evolution phase can not be predicted and may differ between sin-
gle items. Therefor faster items have to wait in order to be filtered until all items
have been processed by the evolution function, thus reducing the potential speedup.
Apparently this additional synchronization might even hurt performance.

An enhanced implementation of the pool pattern that allows for enabling syn-
chronization or not has been designed but not implemented yet. Therefore we
decided to take a different approach for the moment.

Instead of processing all pool items in every iteration, the items can be seen as
a circulating stream. Items are streamed to the optimization stage and as soon as
an item is finished it is passed instantly to the filter without waiting for other items
to finish. If the filter decides that an item should stay in the optimization loop it is
again streamed to the optimization stages until the algorithm terminates.

This concept is implemented using the streaming patterns pipeline, farm and
stream iteration pattern. Details about these patterns can be found in deliverable
D2.1 and D2.4. The outermost pattern constitutes the stream iteration pattern. It
initially generates the stream from the items in the solution pool and keeps the
items streaming until the termination criterion is met. Nested in the stream iter-
ation pattern is a three stage pipeline. The first stage generates the stream from
the pool. The second stage consists of a farm pattern containing the optimiza-
tion stages. The third stages acts as the filter. Figure 4.9 depicts how the these
patterns are composed. The stream iteration pattern around the inner pattern struc-
ture should connect the third and the first pipeline stage keeping the items in the
loop. Unfortunately there is no GrPPI implementation of this pattern available
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yet. Therefore the last and the first stage are connected using a Single-Producer-
Single-Consumer-Queue and checking the termination criterion is done in the first
stream generating stage. This construct will be replaced with the stream iteration
patterns as soon as it is available. Since the stream iteration pattern will use quite
the same concept there will be no considerable performance differences, but will
reduce code complexity.

Listing 4.1: Parallelization using Streaming Parallel Patterns.

boost::lockfree: :spsc_queue<wp_type, boost::lockfree::capacity<100> >
(cont.)buffer;
for (int i = 0; 1 < pool_.size(); i++) {
buffer.push(pool_.get_element (0));
pool_.erase (0);

}
parallel_execution_omp p{3}, f_evo{ (this->_numWorker - 4)}, f_filter{1l};

std::atomic<bool> break_opt (false);
int new_pool_size = pool_.size();

//stage 0: create stream of items
//pull items from spsc queue
//check if done
auto stage_0 = [&break_opt, &buffer] ()
{
wp_type wp;
if ( break_opt )
return optional<wp_type>();
while (!buffer.pop (wp))
{
continue;
}
return optional<wp_type> (wp);
}i

//stage 1: farm of evolution functions
auto stage_1 = Farm(f_evo, [this] (wp_type wp)
{
pthread_t tid = pthread_self();
int threadid = omp_get_thread_num();
wp->get_opti_object () .setThreadId (threadid) ;
wp->set_error (false);
bool error;

// Going through the working units (i.e., all the constraints)
for (int i = 0; 1 < this->id_vec_.size(); 1i++)
{
error = this->working_units_copies_[threadid] [this->id_vec_[i]]->run (*
(cont.)wp);

if (error)
{
wp—->set_error (true);
break;
}
}
return wp;

)i
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//stage 2: filter solution; put them back to buffer
auto stage_2 = [this, &break_opt, &buffer, &new_pool_size] (wp_type wp)
{

for (wp_type& item : output)
{
while (!buffer.push(item))
continue;
}
bi

Pipeline (p, stage_0, stage_1l, stage_2);

4.2.2.1 Preliminary Evaluation

Proper evaluation could not be done using the current implementation of the used
patterns. The main reason is that the nested farm pattern uses a spin waiting ap-
proach for polling for items in the queues that are used to connect the stages of the
outer pipeline. These causes the application to freeze in almost all runs because
all available threads are busy polling for items and the thread that should fill the
queue that connects the last and the first pipeline stage does not get execution time.
Furthermore the current farm implementation ensure that the items leave the farm
in the same order as they entered it. This ordering costs a lot of execution time and
is not needed for this use case. Since the pool pattern does not keep the order of
the items a fair comparison of these two implementations could not be done.

4.3 Tools Application

So far we evaluated the Refactoring Tool and the Parallel Pattern Analyzer Tool
(PPAT) on this use case. At the moment both tools are not sophisticated enough to
deal with the code of the use case well. More details of the evaluation will be given
in the next two chapters. Furthermore we started to evaluate the Verification Tool,
but two make it work some changes have to be done in the use case code. The tool
relies on the fact that the application produces the same results for two runs if the
same input arguments are provided. At the moment the stochastic implementation
of our use cases does not produce the same result for two runs. We have started to
change this in order to be able to use this tool, and as an additional benefit make
the application more testable.

4.3.1 Refactoring Tool

The refactoring tool could only be applied partially successful on the use case. The
tool was able to find possibilities where to introduce additional parallel constructs
(Figure 4.10, 4.11, 4.12 and 4.13. Unfortunately the tool was not able to identify
the main loop that has been parallelized manually as a possibility for parallelism.
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Figure 4.10: Parallelism found in DataReader.

The simple reason is that this loop is a while-loop and the tool is not yet able to
cope with that. Apart from one location all the possibilities reside in parts of the
code that are only executed once at the beginning of the application. Since it is
the optimization part where the majority of the execution time is spent, the perfor-
mance gain would be negligible. Further improvements of the tool will drastically
increase its usability.

4.3.2 Parallel Pattern Analyzer Tool

The Pattern Discovery Tool, as defined in D2.3, identifies instances of parallel
pattern candidates within C++ applications . The tool defines a set of program
shaping techniques and methods in order to refactor sequential C++ programs into
hygienic C++ code with equivalent functionality by eliminating non-hygienic code
properties, such as side-effects and unnecessary task/data dependencies. It also
describes the sets of requirements and properties for the initial pattern set that needs
to be satisfied in C++ codes in order for a particular pattern to be introduced.

The Parallel Pattern Analyzer Tool (PPAT) introduced in D2.3, Chapter 4, is a
prototype tool for detecting parallel patterns of the RePhrase project in sequential
applications. The tool is completely independent of the re-factoring tool used,
since it identifies parallel patterns, it performs a static analysis and avoids the use
of profiling techniques, thus becomes much faster than other approaches; and it
guarantees that parallel patterns detected comply with a series of requirements that
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Figure 4.11: Parallelism found in DefaultValue.
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145°  void combinations_w_repetitions( std::vector<std::vector<unsigned ints>& combs, int num_N, int num k )
147
148 // this function simply computes the combinations of max_num_bands out of num_bands
149 4/ i.e., num_bands == num_max_bands
150 combs.clear();
151
152 std::vector=unsigned ints tmp_combs;
153 tmp_combs . clear () ;
154
155 std:ivector<unsigned int> available_items;
156 available_items.clear();
157 for( unsigned int i = 0; 1 < numN; i++ ) {
158 available_items.push_back( i );
159 i
160
161 combinations_go_w_repetitions( ©, numk, combs, tmp_combs, available_items ); // we initiate computation of combinations C
e 1
=L T | <1

! Problems = Tasks ] console [T Properties 3 Call Graph PerfProfile View + Search %5 Debug @) Error Log @ Breakpoints B ParsFormance 33 € Expressions

6items

Description Project Resource Path Location Type

v 1 Cencurrency Highlight 1 (3 items)

Runtime: 73% cso FFD.cpp /C50/OptiFramework/sre/core 280 Concurrency Highli
Runtime;: 79% cs0 FFD.cpp /C50/OptiFramework/sre/core 271 Concurrency Highli
Runtime: 80% cso FFD.cpp JcsofoptiFramework/src/core line 262 Concurrency Highlight 1

¥ i Concurrency Highlight 3 (3 items)

Runtime: 2% cso c /C50/0pt Jcor line 138 Concurrency Highlight 3
Runtime: 2% cso DataResdercp; /C50/DataManager line 97 Concurrency Highlight 3
Runtime: 3% cso DefaultValue.c; /C5O/MeasDbDataContext Concurrency Highlight 3

Writable Smart Insert | 150:23

Figure 4.12: Parallelism found in CommonMathFunctions.
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Figure 4.13: Parallelism found in FirstFitDecrease.

prove the correctness of the solution.

4.3.2.1 Evaluation in CSO Use-Case

In this subsection we present an experimental evaluation of PPAT on the CSO use
case. The objective is to test PPAT on the CSO source code in order to analyze any
potential loop that can be re-factored into parallel patterns. This evaluation have
been performed with the following software:

The CSO code has been compiled with CMAKE V2.8.12.1, Boost C++
V1.55.

The compilation of PPAT has been performed using the LLVM compiler
infrastructure v3.7.0, with its Clang compiler and the extended attributes
from REPARA.

The results of the evaluation methodology for the analyzed component of CSO
source code is depicted in Table 4.1. The CSO code is basically divided in two ma-
jor parts, the Core and OptiFramework. For simplicity, the most significant results
are presented in here where only StepByStep.h is part of OptiFramework while the
rest are part of the Core. We describe in the table the number of code lines, total
number of loops in the source code, number of loops reported by PPAT, number of
parallel patterns (pipelines, farm, map, reduce) detected during the evaluation. Ev-
ery loop marked as PPAT(loops) in Table 4.1 is a loop reported by PPAT as having
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Table 4.1: Statistics of OptiFramework, part of CSO source code

Test Lines Loops
(loops) (patterns)

StepByStep.h 717 5 2 1
TestMethods.cpp 162 3 3 0
Remove.cpp 137 3 3 0
CommonMathFunctions.cpp 201 11 6 5

698

699 template <typename T>

700 bool StepByStep<T>::finish( Workpiece_pool< boost::shared_ptr< Workpiece<T> > > & pool )

701 {

702 boost::shared_ptr< Workpiece<T> > wp

703 bool found_good_standing_object(false);

704

705 //It isn't a Pipeline

706 //Less than 2 stages

707

708 for (unsigned int 1=0;i<pool.size();i++){

709

710 pool.wait_and_get(wp,0);

711 const std::vector<bool>& standing_flags = wp->get_info().get_standing_flags();

712

713 if ( standing_flags.size() > 0 ){

714 if (standing_flags.back() == true){

715 found_good_standing_object = true;

716 3

717 }

718 else

719 found_good_standing_object = true;

720

721 pool.push_back( wp );

722 if (found_good_standing_object == true)

723

724 return false;

725 1

Figure 4.14: Annotated loop in StepByStep.h with a return clause

not enough stages to compute (less than 2 stages). Meaning that PPAT was not able
to detect a pattern due to potential missing requirements in the loop, as described
in D2.3, Chapter 3.

PPAT run successfully on the source code without errors. The evaluation re-
ported different parallel situations described below. Out of the patterns reported in
the evaluation, maps and pipelines were within the majority although, there was a
farm reported but none reduce.

Part of the code of StepByStep.h has already been implemented with parallel
patterns. While there exists three loops on the non-parallel implementation side
of the code, one was reported as a two-stages pipeline, this is an expected result.
As for the other two loops, they were annotated as having a return and a break
statement respectively. Fig. 4.14 shows one of them. The no break statements
within the code is one of the conditions that need to be met for the code to be
evaluated as a potential parallel pattern (D2.3, Chapter 3).

The 3 loops in TestMethods.cpp and Remove.cpp have been annotated as empty
loops with the use of return statements or writing on a global variable. Therefore,
no patterns were recognized on them. The situation is similar in the two cases
where, there are nested loops with an inner continue or return statement that might
be propagated on the loops.
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221 void all_combinations_go_w_repetitions( int offset, int k, std::vector<std::vector<unsigned int>>& combs, std::vector<unsigned
int>& tmp_combs, std::vector<unsigned int>& available_items )

222

223 F(k==0)

224 conbs.push_back( tmp_combs );

225 return;

226 3}

227 [[rph::pipeline, rph::id(3) , rph::stream(i,tmp_conbs,available_items,combs)]]

228 for( unsigned int i = offset; i <= available_items.size() - k; ++i ) {

229

230 [[rph::stage(0), rph::pipelineid(3), rph::in(i,offset,tmp_combs,available_items), rph::out(i,tmp_combs,available_items)]]
231 {

232

233 assert( available_items[i] == i );

234 tmp_conbs. push_back( available_itens[i]

235 3}

236

237 [[rph::stage(1), rph::pipelineid(3), rph::in(available_items,i,k,combs,tmp_combs), rph::out(combs,tmp_combs)]]
238 {

239 i

240 combinations_go_w_repetitions( i, k - 1, combs, tmp_combs, available_items ); |
241 tmp_combs. pop_back();

242

243 3}

244 }

245 3}

Figure 4.15: Annotated pipeline in CommonMathFunctions.cpp

247 void all_combinations_w_repetitions( std::vector<std::vector<unsigned int>>& combs, int num_N, int min_num_k, int max_num_k )
248 {

249 assert( max_num_k <= num_N );

250

251 combs.clear();

252

253 std::vector<unsigned int> tmp_combs;

254 tmp_combs.clear();

255

256 std::vector<unsigned int> available_itenms;

257 available_items.clear();

258 //1t isn't a Pipeline

259 //Not enough compute

260 //Less than 2 stages

261

262 for( unsigned int 1 = 0; 1 < num_N; i++ ) {

263 available_items.push_back( i );

264 3}

265 //1t isn't a Pipeline

266 //Less than 2 stages

267

268 [[rph:map, rph::in(min_num_k,combs), rph::out(combs)]]

269

270 for( unsigned int num_k = min_num_k; num_k <= max_num_k; num_k++ )
271 all_combinations_go_w_repetitions( 0, num_k, combs, tmp_combs, available_items );
272 3

Figure 4.16: Annotated map and Not-enough-compute in CommonMathFunc-
tions.cpp

CommonMathFunctions.cpp is composed of a number of functions that contain
loops, that caused PPAT to report a high number of pattern found, four pipelines
and one map. Figure 4.15 shows an annotated pipeline found in CommonMath-
Functions.cpp during the evaluation.

There are also loops where the computation is quite simplistic to be imple-
mented with parallel patterns as it is the case of the loop depicted in Fig. 4.16 line
262, where there is an hygienic code although, there are not enough elements to
report a pattern. While the loop in line 268 has been evaluated as a map.

The source code, specially the Core part of it, contains a high number of an-
notated loops where PPAT is not able to report as potential parallel patterns. Nev-
ertheless, PPAT found relevant pipelines, maps and farms in the CSO source code
and made annotations on potential implementation of patterns. Although, it seems
to be reasonable to manually modify the Core source code in order to bypass the
high number of annotations such that PPAT can detect them as parallel patterns in
further evaluations.
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5 Conclusion

In this deliverable the initial porting process of the use cases using RePhrase tech-
nologies and the initially performance evaluations results has been reported. Con-
cluding we can say that we were able to successfully apply RePhrase technologies
to parallelize existing code using parallel patterns. The evaluation results proved
that this approve allows a reasonable performance increase comparable to hand-
crafted implementations while reducing complexity, development time and need
for expert knowledge.
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